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Graphs: Definitions and 
Representations

(Chapter 9)

CSE 373
Data Structures and Algorithms
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Today’s Outline

• Admin: 
– HW #4 due Tuesday, Feb 21 at 11pm
– Midterm 2, Fri Feb 24

• Memory hierarchy
• Graphs

– Representations

Graphs

• A graph is a formalism for representing relationships among items
– Very general definition because very general concept

• A graph is a pair
G = (V,E)

– A set of vertices, also known as nodes
V = {v 1,v 2,…,v n}

– A set of edges
E = {e 1,e 2,…,e m}

• Each edge ei is a pair of vertices 
(v j ,v k)

• An edge “connects” the vertices

• Graphs can be directed or undirected

2/15/2012 3

Han

Leia

Luke

V = { Han, Leia , Luke }
E = {( Luke , Leia ), 

( Han, Leia ), 
( Leia , Han)}

An ADT?

• Can think of graphs as an ADT with operations like 
isEdge((v j ,v k))

• But what the “standard operations” are is unclear

• Instead we tend to develop algorithms over graphs and then use 
data structures that are efficient for those algorithms

• Many important problems can be solved by:
1. Formulating them in terms of graphs

2. Applying a standard graph algorithm

• To make the formulation easy and standard, we have a lot of 
standard terminology about graphs
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Some graphs

For each, what are the vertices and what are the edges?

• Web pages with links

• Facebook friends
• “Input data” for the Kevin Bacon game
• Methods in a program that call each other

• Road maps (e.g., Google maps)
• Airline routes

• Family trees
• Course pre-requisites
• …
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Undirected Graphs

• In undirected graphs, edges have no specific direction
– Edges are always “two-way”
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• Thus, (u,v) ∈∈∈∈ E implies (v,u) ∈∈∈∈ E.  

– Only one of these edges needs to be in the set; the other is 
implicit

• Degree of a vertex: number of edges containing that vertex

– Put another way: the number of adjacent vertices
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Directed graphs

• In directed graphs (sometimes called digraphs), edges have a 
specific direction
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• Thus, (u,v) ∈∈∈∈ E does not imply (v,u) ∈∈∈∈ E.  

• Let (u,v) ∈∈∈∈ E mean u → v and call u the source and v
the destination

• In-Degree of a vertex: number of in-bound edges, i.e., edges 
where the vertex is the destination

• Out-Degree of a vertex: number of out-bound edges, i.e., edges 
where the vertex is the source

or

2 edges 
here
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Self-edges, connectedness, etc.

• A self-edge a.k.a. a loop is an edge of the form (u,u)

– Depending on the use/algorithm, a graph may have:
• No self edges

• Some self edges
• All self edges (in which case often implicit, but we will be 

explicit)

• A node can have a degree / in-degree / out-degree of zero

• A graph does not have to be connected (In an undirected graph, 
this means we can follow edges from any node to every other 
node), even if every node has non-zero degree
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More notation

For a graph G = (V,E) :

• |V| is the number of vertices
• |E| is the number of edges

– Minimum?

– Maximum for undirected?
– Maximum for directed?

• If (u,v) ∈∈∈∈ E

– Then v is a neighbor of u, 
i.e., v is adjacent to u

– Order matters for directed edges
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V = { A, B, C, D}
E = {( C, B), 

( A, B), 
( B, A)
( C, D)}

D
More notation

For a graph G = (V,E) :
• |V| is the number of vertices

• |E| is the number of edges
– Minimum?                           0

– Maximum for undirected? |V||V+1|/2 ∈∈∈∈ O(|V| 2)

– Maximum for directed?     |V| 2 ∈∈∈∈ O(|V| 2)

(assuming self-edges allowed, else subtract |V| )

• If (u,v) ∈∈∈∈ E

– Then v is a neighbor of u, 
i.e., v is adjacent to u

– Order matters for directed edges: In this example v is adjacent
to u, but u is not adjacent to v (unless (v,u) ∈∈∈∈ E)
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Examples again

Which would use directed edges?  Which would have self-edges? 
Which could have 0-degree nodes?

• Web pages with links
• Facebook friends

• “Input data” for the Kevin Bacon game
• Methods in a program that call each other

• Road maps (e.g., Google maps)
• Airline routes
• Family trees

• Course pre-requisites
• …
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Weighted graphs

• In a weighed graph, each edge has a weight a.k.a. cost
– Typically numeric (most examples will use ints)
– Orthogonal to whether graph is directed

– Some graphs allow negative weights; many don’t
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Examples

What, if anything, might weights represent for each of these?  Do 
negative weights make sense?

• Web pages with links
• Facebook friends

• “Input data” for the Kevin Bacon game
• Methods in a program that call each other

• Road maps (e.g., Google maps)
• Airline routes
• Family trees

• Course pre-requisites
• …
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Paths and Cycles

• A path is a list of vertices [v 0,v 1,…,v n] such that 
(v i ,v i+1 ) ∈∈∈∈ E for all 0 ≤≤≤≤ i < n.  Say “a path from v0 to vn”

• A cycle is a path that begins and ends at the same node (v0==vn)
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Example path (that also happens to be a cycle): 
[Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle]

Path Length and Cost
• Path length: Number of edges in a path (also called “unweighted cost”)
• Path cost: sum of the weights of each edge

Example where: 
P= [Seattle, Salt Lake City, Chicago, Dallas, San Francisco]
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length(P) = 4
cost(P) = 9.5

Simple paths and cycles

• A simple path repeats no vertices, (except the first might be the last):
[Seattle, Salt Lake City, San Francisco, Dallas]
[Seattle, Salt Lake City, San Francisco, Dallas, Seattle]

• Recall, a cycle is a path that  ends where it begins:

[Seattle, Salt Lake City, San Francisco, Dallas, Seattle]
[Seattle, Salt Lake City, Seattle, Dallas, Seattle]

• A simple cycle is a cycle and a simple path:
[Seattle, Salt Lake City, San Francisco, Dallas, Seattle]
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Paths/cycles in directed graphs

Example:

Is there a path from A to D?

Does the graph contain any cycles?
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Paths/cycles in directed graphs

Example:

Is there a path from A to D?    No

Does the graph contain any cycles?    No
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Undirected graph connectivity

• An undirected graph is connected if for all
pairs of vertices u,v , there exists a path from u to v

• An undirected graph is complete, a.k.a. fully connected if for all 
pairs of vertices u,v , there exists an edge from u to v
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Connected graph Disconnected graph

Directed graph connectivity

• A directed graph is strongly connected if 
there is a path from every vertex to every 
other vertex

• A directed graph is weakly connected if 
there is a path from every vertex to every 
other vertex ignoring direction of edges

• A complete a.k.a. fully connected directed 
graph has an edge from every vertex to 
every other vertex
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Examples

For undirected graphs: connected?  
For directed graphs: strongly connected? weakly connected?

• Web pages with links
• Facebook friends

• “Input data” for the Kevin Bacon game
• Methods in a program that call each other

• Road maps (e.g., Google maps)
• Airline routes
• Family trees

• Course pre-requisites
• …
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Trees as graphs

When talking about graphs, 
we say a tree is a graph that is:

– undirected

– acyclic
– connected

So all trees are graphs, but not 
all graphs are trees

How does this relate to the trees 
we know and love?...
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Example:

Rooted Trees
• We are more accustomed to rooted trees where:

– We identify a unique (“special”) root
– We think of edges as directed: parent to children

• Given a tree, once you pick a root, you have a unique rooted 
tree (just drawn differently and with undirected edges)
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Rooted Trees (Another example)
• We are more accustomed to rooted trees where:

– We identify a unique (“special”) root
– We think of edges as directed: parent to children

• Given a tree, once you pick a root, you have a unique rooted 
tree (just drawn differently and with undirected edges)
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Directed acyclic graphs (DAGs)

• A DAG is a directed graph with no (directed) cycles
– Every rooted directed tree is a DAG
– But not every DAG is a rooted directed tree:

– Every DAG is a directed graph
– But not every directed graph is a DAG:
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Examples

Which of our directed-graph examples do you expect to be a DAG?

• Web pages with links

• “Input data” for the Kevin Bacon game
• Methods in a program that call each other

• Airline routes
• Family trees
• Course pre-requisites

• …
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Density / sparsity

• Recall: In an undirected graph, 0 ≤ |E| < |V|2

• Recall: In a directed graph: 0 ≤ |E| ≤ |V|2

• So for any graph, |E| is O(|V|2)

• One more fact: If an undirected graph is connected, then |E| ≥ |V|-1 

• Because |E| is often much smaller than its maximum size, we do not 
always approximate as |E| as O(|V|2)

– This is a correct bound, it just is often not tight
– If it is tight, i.e., |E| is Θ(|V|2) we say the graph is dense

• More sloppily, dense means “lots of edges”
– If |E| is O(|V|) we say the graph is sparse

• More sloppily, sparse means “most (possible) edges missing”

2/15/2012 27

What’s the data structure?
Things we might want to do:
• iterate over vertices
• iterate over edges
• iterate over vertices adj. to a vertex
• check whether an edge exists

• find the lowest-cost path from x to y
Which data structure is “best” can depend on:

• properties of the graph (e.g., dense versus sparse)
• the common queries (e.g., “is (u,v) an edge?” versus “what 

are the neighbors of node u?”)

We need a data structure that represents graphs:
• List of vertices + list of edges (rarely good enough)

• Adjacency Matrix 
• Adjacency List
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Adjacency matrix

• Assign each node a number from 0 to |V|-1

• A |V| x |V| matrix (i.e., 2-D array) of booleans (or 1 vs. 0)
– If Mis the matrix, then M[u][v] == true means there is 

an edge from u to v
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Adjacency matrix properties

• Running time to:
– Get a vertex’s out-edges: 
– Get a vertex’s in-edges: 

– Decide if some edge exists: 
– Insert an edge: 

– Delete an edge: 

• Space requirements:

• Best for sparse or dense graphs?
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Adjacency matrix properties

• Running time to:
– Get a vertex’s out-edges: O(|V|)
– Get a vertex’s in-edges: O(|V|)

– Decide if some edge exists: O(1)
– Insert an edge: O(1)

– Delete an edge: O(1)

• Space requirements:

– |V|2 bits

• Best for dense graphs
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Adjacency matrix properties (cont.)

• How will the adjacency matrix vary for an undirected graph?
– Undirected: Will be symmetric about diagonal axis

• How can we adapt the representation for weighted graphs?
– Instead of a boolean, store an int/double in each cell

– Need some value to represent ‘not an edge’
• Say -1 or 0 A B C
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Adjacency List

• Assign each node a number from 0 to |V|-1

• An array of length |V| in which each entry stores a list (e.g., 
linked list) of all adjacent vertices
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Adjacency List Properties
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• Running time to:
– Get all of a vertex’s out-edges: 

– Get all of a vertex’s in-edges:

– Decide if some edge exists: 

– Insert an edge: 

– Delete an edge: 

• Space requirements:

–

• Best for dense or sparse graphs?
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Adjacency List Properties
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• Running time to:
– Get all of a vertex’s out-edges: 

O(d) where d is out-degree of vertex

– Get all of a vertex’s in-edges:
O(|E|) (but could keep a second adjacency list for this!)

– Decide if some edge exists: 
O(d) where d is out-degree of source

– Insert an edge: O(1)

– Delete an edge: O(d) where d is out-degree of source

• Space requirements:

– O(|V|+|E|)

• Best for sparse graphs: so usually just stick with linked lists
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Undirected graphs

Adjacency matrices & adjacency lists both do fine for undirected graphs
• Matrix: Could save space; only ~1/2 the array is used
• Lists: Each edge in two lists to support efficient “get all neighbors”

Example:
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Next…

Okay, we can represent graphs

Now let’s implement some useful and non-trivial algorithms

• Topological sort: Given a DAG, order all the vertices so that 
every vertex comes before all of its neighbors

• Shortest paths: Find the shortest or lowest-cost path from x to y
– Related: Determine if there even is such a path

2/15/2012 37


