
2/15/2012

1

2/15/2012 1

Graphs: Definitions and
Representations

(Chapter 9)

CSE 373
Data Structures and Algorithms

2/15/2012 2

Today’s Outline

• Admin:
– HW #4 due Tuesday, Feb 21 at 11pm
– Midterm 2, Fri Feb 24

• Memory hierarchy
• Graphs

– Representations

Graphs

• A graph is a formalism for representing relationships among items
– Very general definition because very general concept

• A graph is a pair
G = (V,E)

– A set of vertices, also known as nodes
V = {v 1,v 2,…,v n}

– A set of edges
E = {e 1,e 2,…,e m}

• Each edge ei is a pair of vertices
(v j ,v k)

• An edge “connects” the vertices

• Graphs can be directed or undirected

2/15/2012 3

Han

Leia

Luke

V = { Han, Leia , Luke }
E = {(Luke , Leia),

(Han, Leia),
(Leia , Han)}

An ADT?

• Can think of graphs as an ADT with operations like
isEdge((v j ,v k))

• But what the “standard operations” are is unclear

• Instead we tend to develop algorithms over graphs and then use
data structures that are efficient for those algorithms

• Many important problems can be solved by:
1. Formulating them in terms of graphs

2. Applying a standard graph algorithm

• To make the formulation easy and standard, we have a lot of
standard terminology about graphs

2/15/2012 4

Some graphs

For each, what are the vertices and what are the edges?

• Web pages with links

• Facebook friends
• “Input data” for the Kevin Bacon game
• Methods in a program that call each other

• Road maps (e.g., Google maps)
• Airline routes

• Family trees
• Course pre-requisites
• …

2/15/2012 5

Undirected Graphs

• In undirected graphs, edges have no specific direction
– Edges are always “two-way”

2/15/2012 6

• Thus, (u,v) ∈∈∈∈ E implies (v,u) ∈∈∈∈ E.

– Only one of these edges needs to be in the set; the other is
implicit

• Degree of a vertex: number of edges containing that vertex

– Put another way: the number of adjacent vertices

A

B

C

D

2/15/2012

2

Directed graphs

• In directed graphs (sometimes called digraphs), edges have a
specific direction

2/15/2012 7

• Thus, (u,v) ∈∈∈∈ E does not imply (v,u) ∈∈∈∈ E.

• Let (u,v) ∈∈∈∈ E mean u → v and call u the source and v
the destination

• In-Degree of a vertex: number of in-bound edges, i.e., edges
where the vertex is the destination

• Out-Degree of a vertex: number of out-bound edges, i.e., edges
where the vertex is the source

or

2 edges
here

A

B

C

D
A

B

C

Self-edges, connectedness, etc.

• A self-edge a.k.a. a loop is an edge of the form (u,u)

– Depending on the use/algorithm, a graph may have:
• No self edges

• Some self edges
• All self edges (in which case often implicit, but we will be

explicit)

• A node can have a degree / in-degree / out-degree of zero

• A graph does not have to be connected (In an undirected graph,
this means we can follow edges from any node to every other
node), even if every node has non-zero degree

2/15/2012 8

More notation

For a graph G = (V,E) :

• |V| is the number of vertices
• |E| is the number of edges

– Minimum?

– Maximum for undirected?
– Maximum for directed?

• If (u,v) ∈∈∈∈ E

– Then v is a neighbor of u,
i.e., v is adjacent to u

– Order matters for directed edges

2/15/2012 9

A

B

C

V = { A, B, C, D}
E = {(C, B),

(A, B),
(B, A)
(C, D)}

D
More notation

For a graph G = (V,E) :
• |V| is the number of vertices

• |E| is the number of edges
– Minimum? 0

– Maximum for undirected? |V||V+1|/2 ∈∈∈∈ O(|V| 2)

– Maximum for directed? |V| 2 ∈∈∈∈ O(|V| 2)

(assuming self-edges allowed, else subtract |V|)

• If (u,v) ∈∈∈∈ E

– Then v is a neighbor of u,
i.e., v is adjacent to u

– Order matters for directed edges: In this example v is adjacent
to u, but u is not adjacent to v (unless (v,u) ∈∈∈∈ E)

2/15/2012 10

A

B

C

D

Examples again

Which would use directed edges? Which would have self-edges?
Which could have 0-degree nodes?

• Web pages with links
• Facebook friends

• “Input data” for the Kevin Bacon game
• Methods in a program that call each other

• Road maps (e.g., Google maps)
• Airline routes
• Family trees

• Course pre-requisites
• …

2/15/2012 11

Weighted graphs

• In a weighed graph, each edge has a weight a.k.a. cost
– Typically numeric (most examples will use ints)
– Orthogonal to whether graph is directed

– Some graphs allow negative weights; many don’t

2/15/2012 12

20

30

35

60

Mukilteo

Edmonds

Seattle

Bremerton

Bainbridge

Kingston

Clinton

2/15/2012

3

Examples

What, if anything, might weights represent for each of these? Do
negative weights make sense?

• Web pages with links
• Facebook friends

• “Input data” for the Kevin Bacon game
• Methods in a program that call each other

• Road maps (e.g., Google maps)
• Airline routes
• Family trees

• Course pre-requisites
• …

2/15/2012 13

Paths and Cycles

• A path is a list of vertices [v 0,v 1,…,v n] such that
(v i ,v i+1) ∈∈∈∈ E for all 0 ≤≤≤≤ i < n. Say “a path from v0 to vn”

• A cycle is a path that begins and ends at the same node (v0==vn)

2/15/2012 14

Seattle

San Francisco
Dallas

Chicago

Salt Lake City

Example path (that also happens to be a cycle):
[Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle]

Path Length and Cost
• Path length: Number of edges in a path (also called “unweighted cost”)
• Path cost: sum of the weights of each edge

Example where:
P= [Seattle, Salt Lake City, Chicago, Dallas, San Francisco]

2/15/2012 15

Seattle

San Francisco Dallas

Chicago

Salt Lake City

3.5

2 2

2.5

3

2
2.5

2.5

length(P) = 4
cost(P) = 9.5

Simple paths and cycles

• A simple path repeats no vertices, (except the first might be the last):
[Seattle, Salt Lake City, San Francisco, Dallas]
[Seattle, Salt Lake City, San Francisco, Dallas, Seattle]

• Recall, a cycle is a path that ends where it begins:

[Seattle, Salt Lake City, San Francisco, Dallas, Seattle]
[Seattle, Salt Lake City, Seattle, Dallas, Seattle]

• A simple cycle is a cycle and a simple path:
[Seattle, Salt Lake City, San Francisco, Dallas, Seattle]

2/15/2012 16

Paths/cycles in directed graphs

Example:

Is there a path from A to D?

Does the graph contain any cycles?

2/15/2012 17

A

B

C

D

Paths/cycles in directed graphs

Example:

Is there a path from A to D? No

Does the graph contain any cycles? No

2/15/2012 18

A

B

C

D

2/15/2012

4

Undirected graph connectivity

• An undirected graph is connected if for all
pairs of vertices u,v , there exists a path from u to v

• An undirected graph is complete, a.k.a. fully connected if for all
pairs of vertices u,v , there exists an edge from u to v

2/15/2012 19

Connected graph Disconnected graph

Directed graph connectivity

• A directed graph is strongly connected if
there is a path from every vertex to every
other vertex

• A directed graph is weakly connected if
there is a path from every vertex to every
other vertex ignoring direction of edges

• A complete a.k.a. fully connected directed
graph has an edge from every vertex to
every other vertex

2/15/2012 20

Examples

For undirected graphs: connected?
For directed graphs: strongly connected? weakly connected?

• Web pages with links
• Facebook friends

• “Input data” for the Kevin Bacon game
• Methods in a program that call each other

• Road maps (e.g., Google maps)
• Airline routes
• Family trees

• Course pre-requisites
• …

2/15/2012 21

Trees as graphs

When talking about graphs,
we say a tree is a graph that is:

– undirected

– acyclic
– connected

So all trees are graphs, but not
all graphs are trees

How does this relate to the trees
we know and love?...

2/15/2012 22

A

B

D E

C

F

HG

Example:

Rooted Trees
• We are more accustomed to rooted trees where:

– We identify a unique (“special”) root
– We think of edges as directed: parent to children

• Given a tree, once you pick a root, you have a unique rooted
tree (just drawn differently and with undirected edges)

2/15/2012 23

A

B

D E

C

F

HG

redrawn
A

B

D E

C

F

HG

Rooted Trees (Another example)
• We are more accustomed to rooted trees where:

– We identify a unique (“special”) root
– We think of edges as directed: parent to children

• Given a tree, once you pick a root, you have a unique rooted
tree (just drawn differently and with undirected edges)

2/15/2012 24

A

B

D E

C

F

HG

redrawn

F

G H C

A

B

D E

2/15/2012

5

Directed acyclic graphs (DAGs)

• A DAG is a directed graph with no (directed) cycles
– Every rooted directed tree is a DAG
– But not every DAG is a rooted directed tree:

– Every DAG is a directed graph
– But not every directed graph is a DAG:

2/15/2012 25

Examples

Which of our directed-graph examples do you expect to be a DAG?

• Web pages with links

• “Input data” for the Kevin Bacon game
• Methods in a program that call each other

• Airline routes
• Family trees
• Course pre-requisites

• …

2/15/2012 26

Density / sparsity

• Recall: In an undirected graph, 0 ≤ |E| < |V|2

• Recall: In a directed graph: 0 ≤ |E| ≤ |V|2

• So for any graph, |E| is O(|V|2)

• One more fact: If an undirected graph is connected, then |E| ≥ |V|-1

• Because |E| is often much smaller than its maximum size, we do not
always approximate as |E| as O(|V|2)

– This is a correct bound, it just is often not tight
– If it is tight, i.e., |E| is Θ(|V|2) we say the graph is dense

• More sloppily, dense means “lots of edges”
– If |E| is O(|V|) we say the graph is sparse

• More sloppily, sparse means “most (possible) edges missing”

2/15/2012 27

What’s the data structure?
Things we might want to do:
• iterate over vertices
• iterate over edges
• iterate over vertices adj. to a vertex
• check whether an edge exists

• find the lowest-cost path from x to y
Which data structure is “best” can depend on:

• properties of the graph (e.g., dense versus sparse)
• the common queries (e.g., “is (u,v) an edge?” versus “what

are the neighbors of node u?”)

We need a data structure that represents graphs:
• List of vertices + list of edges (rarely good enough)

• Adjacency Matrix
• Adjacency List

2/15/2012 28

Adjacency matrix

• Assign each node a number from 0 to |V|-1

• A |V| x |V| matrix (i.e., 2-D array) of booleans (or 1 vs. 0)
– If Mis the matrix, then M[u][v] == true means there is

an edge from u to v

2/15/2012 29

A B C

A

B

C

D

D

A

B

C

D T

T

T T

F F F

F F F

F F

F F F F

Adjacency matrix properties

• Running time to:
– Get a vertex’s out-edges:
– Get a vertex’s in-edges:

– Decide if some edge exists:
– Insert an edge:

– Delete an edge:

• Space requirements:

• Best for sparse or dense graphs?

2/15/2012 30

A B C

A

B

C

D

D

T

T

T T

F F F

F F F

F F

F F F F

2/15/2012

6

Adjacency matrix properties

• Running time to:
– Get a vertex’s out-edges: O(|V|)
– Get a vertex’s in-edges: O(|V|)

– Decide if some edge exists: O(1)
– Insert an edge: O(1)

– Delete an edge: O(1)

• Space requirements:

– |V|2 bits

• Best for dense graphs

2/15/2012 31

A B C

A

B

C

D

D

T

T

T T

F F F

F F F

F F

F F F F

Adjacency matrix properties (cont.)

• How will the adjacency matrix vary for an undirected graph?
– Undirected: Will be symmetric about diagonal axis

• How can we adapt the representation for weighted graphs?
– Instead of a boolean, store an int/double in each cell

– Need some value to represent ‘not an edge’
• Say -1 or 0 A B C

A

B

C

D

D

T

T

T T

F F F

F F F

F F

F F F F
2/15/2012 32

Adjacency List

• Assign each node a number from 0 to |V|-1

• An array of length |V| in which each entry stores a list (e.g.,
linked list) of all adjacent vertices

2/15/2012 33

A

B

C

D
A

B

C

D

B /

A /

D B /

/

Adjacency List Properties

2/15/2012 34

• Running time to:
– Get all of a vertex’s out-edges:

– Get all of a vertex’s in-edges:

– Decide if some edge exists:

– Insert an edge:

– Delete an edge:

• Space requirements:

–

• Best for dense or sparse graphs?

A

B

C

D

B /

A /

D B /

/

Adjacency List Properties

2/15/2012 35

• Running time to:
– Get all of a vertex’s out-edges:

O(d) where d is out-degree of vertex

– Get all of a vertex’s in-edges:
O(|E|) (but could keep a second adjacency list for this!)

– Decide if some edge exists:
O(d) where d is out-degree of source

– Insert an edge: O(1)

– Delete an edge: O(d) where d is out-degree of source

• Space requirements:

– O(|V|+|E|)

• Best for sparse graphs: so usually just stick with linked lists

A

B

C

D

B /

A /

D B /

/

Undirected graphs

Adjacency matrices & adjacency lists both do fine for undirected graphs
• Matrix: Could save space; only ~1/2 the array is used
• Lists: Each edge in two lists to support efficient “get all neighbors”

Example:

2/15/2012 36

A

B

C

D

A B C

A

B

C

D

D

T

T

T T

F F F

F T F

F F

F F T F

F

T

T A

B

C

D

B /

A

D B /

C /

C /

2/15/2012

7

Next…

Okay, we can represent graphs

Now let’s implement some useful and non-trivial algorithms

• Topological sort: Given a DAG, order all the vertices so that
every vertex comes before all of its neighbors

• Shortest paths: Find the shortest or lowest-cost path from x to y
– Related: Determine if there even is such a path

2/15/2012 37

