
1

AVL Trees
(4.4 in Weiss)

CSE 373
Data Structures & Algorithms

Ruth Anderson
Winter 2012

01/25/2012 2

Today’s Outline
• Announcements

– Midterm #1, Monday Jan 30, 2012

– Assignment #3 coming soon, due Mon, Feb 6, 2012.

• Today’s Topics:
– Binary Search Trees (Weiss 4.1-4.3)
– AVL Trees (Weiss 4.4)

01/25/2012 3

The AVL Balance Condition
Left and right subtrees of every node
have equal heights differing by at most 1

Define: balance(x) = height(x.left) – height(x.right)

AVL property: –1 ≤≤≤≤ balance(x) ≤≤≤≤ 1, for every node x

• Ensures small depth
– Will prove this by showing that an AVL tree of height

h must have a lot of (i.e. Θ(2h)) nodes

• Easy to maintain
– Using single and double rotations

4

The AVL Tree Data Structure

4

121062

115

8

14137 9

Structural properties

1. Binary tree property
(0,1, or 2 children)

2. Heights of left and right
subtrees of every node
differ by at most 1

Result:

Worst case depth of any
node is: O(log n)

Ordering property

– Same as for BST
15

01/25/2012 5

Is this an AVL Tree?

2092

155

10

30177

NULLs have
height -1

6

111

84

6

3

1171

84

6

2

5

Student Activity If not AVL, put a box around nodes where AVL property is violated.

AVL

Not AVL

AVL

Not AVL

Circle One:

10 12

7

2

01/25/2012

Proving Shallowness Bound

121062

115

8

14137 9

15

Let S(h) be the min # of nodes in an
AVL tree of height h

Claim: S(h) = S(h-1) + S(h-2) + 1

Solution of recurrence: S(h) = Θ(2h)
(like Fibonacci numbers)

AVL tree of height h=4
with the min # of nodes

An AVL Tree

20

92 15

5

10

30

177

0

0 0

011

2 2

3 …

3

value

height

children

10 key

01/25/2012 8

01/25/2012 9

AVL trees: find, insert

• AVL find :
– same as BST find.

• AVL insert :
– same as BST insert, except may need to “fix”

the AVL tree after inserting new value.

01/25/2012

AVL tree insert
Let x be the node where an imbalance occurs.
Four cases to consider. The insertion is in the

1. left subtree of the left child of x.
2. rightsubtree of the left child of x.
3. left subtree of the right child of x.
4. rightsubtree of the right child of x.

Idea: Cases 1 & 4 are solved by a single rotation.
Cases 2 & 3 are solved by a double rotation.

x

X VU
Z

ab

1 2 3 4
10

AVL Insert: detect & fix imbalances

1. Insert the new node just as you would in a BST (as a new leaf)

2. For each node on the path from the inserted node up to the root, the
insertion may (or may not) have changed the node’s height

3. So after recursive insertion in a subtree, check for height imbalance at
each of these nodes and perform a rotation to restore balance at that
node if needed

All the action is in defining the correct rotations to restore balance

Fact that makes it a bit easier:
– There must be a deepest node that is imbalanced after the insert (all

descendants still balanced)

– After rebalancing this deepest node, every node is balanced

– So at most one node needs to be rebalanced

01/25/2012 11 01/25/2012 12

Bad Case #1
Insert(6)

Insert(3)

Insert(1)

3

Bad Case #1: Example

01/25/2012 13

Insert(6)

Insert(3)

Insert(1)

Third insertion violates
balance property

• happens to be at the
root

What is the only way to fix
this?

6

3

1

2

1

0

6

3

1

0

6
0

Fix: Apply “Single Rotation”
• Single rotation: The basic operation we’ll use to rebalance

– Move child of unbalanced node into parent position

– Parent becomes the “other” child (always okay in a BST!)

– Other subtrees move in only way BST allows (next slide)

01/25/2012 14

3

1 6
00

1

6

3

0

1

2

AVL Property violated at this node (“x”)

1
Single Rotation:

1. Rotate between “x” and child

Generalized left-left case
• Node a imbalanced due to insertion somewhere in

left-left grandchild increasing height of left subtree.
– 1 of 4 possible imbalance causes (other three coming)

• First we did the insertion, which makes a imbalanced:

01/25/2012 15

a

Z

Y

b

X

h h

h
h+1

h+2 a

Z

Y

b

X

h+1 h

h
h+2

h+3

Notational note:
Oval: a node in the tree
Triangle: a subtree

Before insertion – balanced. After insertion –unbalanced!

Generalized left-left case (cont.)
• So we rotate at a, using BST facts: X < b < Y < a < Z

• A single rotation to the right restores balance at the node
– To same height as before insertion (so ancestors now balanced)

16

a

Z

Y

b

X

h+1 h

h
h+2

h+3 b

ZY

a
h+1 h h

h+1

h+2

X

After insertion –unbalanced! After single rotation – balanced!

01/25/2012 17

Single rotation example: insert(1)

21103

205

15

1

2 4

17

01/25/2012 18

21

10

3 20

5

15

1

2

4

17

Soln:

4

Another example: insert(16)

01/25/2012 19

104

228

15

3 6

19

17 20

24

16

104

8

15

3 6

19

17

2016

22

24

The general right-right case
• Mirror image to left-left case, so you rotate the other way

– Single rotation to the left
– Exact same concept, but slightly different code

01/25/2012 20

a

ZY

X

h

h
h+1

h+3

b
h+2 b

Z
Y

a

X

h h

h+1
h+1

h+2

After insertion –unbalanced! After single rotation – balanced!

01/25/2012 21

Bad Case #3
Insert(1)

Insert(6)

Insert(3)

Bad Case #3: Wrong Solution #1
Unfortunately, single rotations are not enough for insertions

in the left-right subtree or the right-left subtree

Simple example: insert(1), insert(6), insert(3)
– First wrong idea:single rotation like we did for left-left

01/25/2012 22

3

6

1

0

1

2

6

1 3

1

0 0

Doesn’t work!!!

Bad Case #3: Wrong Solution #2
Unfortunately, single rotations are not enough for insertions

in the left-right subtree or the right-left subtree

Simple example: insert(1), insert(6), insert(3)
– Second wrong idea:single rotation on the child of the unbalanced

node

01/25/2012 23

3

6

1

0

1

2

6

3

1

0

1

2
Doesn’t work!!!

01/25/2012 24

Bad Case #3: Correct Solution: Double Rotation

3

1 6
00

1

3

6

1

0

1

2

6

3

1

0

1

2

AVL Property violated at this node (“x”)

Double Rotation
1. Rotate between x’s child and grandchild
2. Rotate between x and x’s new child

Step 1 Step 2

5

General right-left case: Double Rotation

25

a

X

b
c

h-1

h

h

h

VU

h+1

h+2
h+3

Z

a

X

c

h-1
h+1h

h

V
U

h+2

h+3

Z

b

h

c

X

h-1

h+1

h

h+1

VU

h+2

Z

b

h

a
h

After insertion –unbalanced!

After first single rotation – still unbalanced!

After entire double
rotation – balanced!01/25/2012

The general right-left case (cont.)
• Like in the left-left and right-right cases, the height of the

subtree after rebalancing is the same as before the insert
– So no ancestor in the tree will need rebalancing

• Does not have to be implemented as two rotations; can just do:

01/25/2012 26

a

X

b
c

h-1

h

h

h

VU

h+1

h+2
h+3

Z

c

X

h-1

h+1

h

h+1

VU

h+2

Z

b

h

a
h

Easier to remember than you may think:

Move c to grandparent’s position and then put a, b, X,
U, V, and Z in the right places to get a legal BST

After insertion –unbalanced! After entire double rotation – balanced!

The last case: left-right

• Mirror image of right-left – double rotation
– Again, no new concepts, only new code to write

01/25/2012 27

a

h-1

h

h
h

VU

h+1

h+2

h+3

Z

X

b

c

c

X

h-1

h+1

h

h+1

VU

h+2

Z

a

h

b
h

After insertion –unbalanced! After entire double rotation – balanced!

01/25/2012 28

Double rotation: insert(5), step 1

104

178

15

3 6

16

5

106

178

15

4

3

16

5

01/25/2012 29

Double rotation:insert(5), step 2

106

178

15

4

3

16

5

10

6 17

8

15

4

3

16

5

AVL Insert - Summary
• Insert as in a BST

• Check back up path for imbalance, which will be 1 of 4 cases:
– node’s left-left grandchild is too tall

– node’s left-right grandchild is too tall

– node’s right-left grandchild is too tall

– node’s right-right grandchild is too tall

• Only one case occurs because tree was balanced before insert

• After the appropriate single or double rotation, the smallest-unbalanced
subtree has the same height as before the insertion
– So all ancestors are now balanced

01/25/2012 30

6

01/25/2012 31

Imbalance at node X

Single Rotation

1. Rotate between x and child

Double Rotation

1. Rotate between x’s child and grandchild

2. Rotate between x and x’s new child

32

Insert into an AVL tree: a b e c d

Student Activity Circle your final answer

33

9

5

2

11

7

1. single rotation?

2. double rotation?

3. no rotation?

Inserting what integer values
would cause the tree to need a:

Single and Double Rotations:

13

30

Student Activity
01/25/2012 34

Insert 3

2092

155

10

3017

Insert(3)

12
0

0

100

1 2

3

0

Unbalanced?

01/25/2012 35

Insert 33

2092

155

10

3017

Insert(33)

3

12
1

0

100

2 2

3

00

How to fix?

Unbalanced?

36

Insert 33: Single Rotation

2092

155

10

30173

12

33

1

0

200

2 3

3

10

0

3092

205

10

333

15
1

0

110

2 2

3

00
1712

0

7

37

Insert 18

Insert(18)

2092

155

10

30173

12
1

0

100

2 2

3

00

How to fix?

Unbalanced?

01/25/2012 38

Insert 18: Single Rotation (oops!)

2092

155

10

30173

12
1

1

200

2 3

3

00

3092

205

10

3

15
1

1

020

2 3

3

0
1712

0

18
0

18
0

01/25/2012 39

Insert 18: Double Rotation (Step #1)

2092

155

10

30173

12
1

1

200

2 3

3

00

18
0

1792

155

10

203

12
1 200

2 3

3

10

30
0

18
0

01/25/2012 40

Insert 18: Double Rotation (Step #2)

1792

155

10

203

12
1 200

2 3

3

10

30
0

18
0

2092

175

10

303

15
1

0

110

2 2

3

00
12

0
18

01/25/2012 41

AVL Trees Revisited
• Balance condition:

For every node x, -1 ≤ balance(x) ≤ 1
– Strong enough : Worst case depth is O(log n)

– Easy to maintain : one single or double rotation

• Guaranteed O(log n) running timefor
– Find ?

– Insert ?

– Delete ?

– buildTree ?

01/25/2012 42

AVL Trees Revisited
• What extra infodid we maintain in each node?

• Wherewere rotations performed?

• How did we locate this node?

