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AVL Trees
(4.4 in Weiss)

CSE 373
Data Structures & Algorithms

Ruth Anderson
Winter 2012
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Today’s Outline
• Announcements

– Midterm #1, Monday Jan 30, 2012

– Assignment #3 coming soon, due Mon, Feb 6, 2012.

• Today’s Topics: 
– Binary Search Trees (Weiss 4.1-4.3)
– AVL Trees (Weiss 4.4)
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The AVL Balance Condition
Left and right subtrees of every node
have equal heights differing by at most 1

Define: balance(x) = height(x.left) – height(x.right)

AVL property:  –1  ≤≤≤≤ balance(x) ≤≤≤≤ 1,   for every node x

• Ensures small depth
– Will prove this by showing that an AVL tree of height

h must have a lot of (i.e. Θ(2h)) nodes

• Easy to maintain
– Using single and double rotations
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The AVL Tree Data Structure
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Structural properties

1. Binary tree property 
(0,1, or 2 children)

2. Heights of left and right 
subtrees of every node
differ by at most 1

Result:

Worst case depth of any 
node is: O(log n)

Ordering property

– Same as for BST
15
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Is this an AVL Tree?
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Student Activity If not AVL, put a box around nodes where AVL property is violated.
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Not AVL

AVL

Not AVL

Circle One:
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Proving Shallowness Bound
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Let S(h) be the min # of nodes in an
AVL tree of height h

Claim: S(h) = S(h-1) + S(h-2) + 1

Solution of recurrence: S(h) = Θ(2h)
(like Fibonacci numbers)

AVL tree of height h=4
with the min # of nodes

An AVL Tree
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AVL trees: find, insert

• AVL find : 
– same as BST find.

• AVL insert : 
– same as BST insert, except may need to “fix” 

the AVL tree after inserting new value.
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AVL tree insert
Let x be the node where an imbalance occurs.
Four cases to consider.  The insertion is in the

1. left subtree of the left child of x.
2. rightsubtree of the left child of x.
3. left subtree of the right child of x.
4. rightsubtree of the right child of x.

Idea: Cases 1 & 4 are solved by a single rotation.
Cases 2 & 3 are solved by a double rotation.

x
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1                 2             3          4
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AVL Insert: detect & fix imbalances

1. Insert the new node just as you would in a BST (as a new leaf)

2. For each node on the path from the inserted node up to the root, the 
insertion may (or may not) have changed the node’s height

3. So after recursive insertion in a subtree, check for height imbalance at 
each of these nodes and perform a rotation to restore balance at that 
node if needed

All the action is in defining the correct rotations to restore balance

Fact that makes it a bit easier:
– There must be a deepest node that is imbalanced after the insert (all 

descendants still balanced)

– After rebalancing this deepest node, every node is balanced

– So at most one node needs to be rebalanced
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Bad Case #1
Insert(6)

Insert(3)

Insert(1)
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Bad Case #1: Example
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Insert(6)

Insert(3)

Insert(1)

Third insertion violates 
balance property

• happens to be at the 
root

What is the only way to fix 
this? 
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Fix: Apply “Single Rotation”
• Single rotation: The basic operation we’ll use to rebalance

– Move child of unbalanced node into parent position

– Parent becomes the “other” child (always okay in a BST!)

– Other subtrees move in only way BST allows (next slide)
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AVL Property violated at this node (“x”)

1
Single Rotation:   

1. Rotate between “x”  and child

Generalized left-left case
• Node a imbalanced due to insertion somewhere in 

left-left grandchild increasing height of left subtree.
– 1 of 4 possible imbalance causes (other three coming)

• First we did the insertion, which makes a imbalanced:
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Notational  note:
Oval: a node in the tree
Triangle: a subtree

Before insertion – balanced. After insertion –unbalanced!

Generalized left-left case (cont.)
• So we rotate at a, using BST facts: X < b < Y < a < Z

• A single rotation to the right restores balance at the node
– To same height as before insertion (so ancestors now balanced)
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After insertion –unbalanced! After single rotation – balanced!
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Single rotation example: insert(1)
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Another example: insert(16)
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The general right-right case
• Mirror image to left-left case, so you rotate the other way

– Single rotation to the left
– Exact same concept, but slightly different code
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After insertion –unbalanced! After single rotation – balanced!
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Bad Case #3
Insert(1)

Insert(6)

Insert(3)

Bad Case #3: Wrong Solution #1
Unfortunately, single rotations are not enough for insertions 

in the left-right subtree or the right-left subtree

Simple example:  insert(1), insert(6), insert(3)
– First wrong idea:single rotation like we did for left-left
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Doesn’t work!!!

Bad Case #3: Wrong Solution #2
Unfortunately, single rotations are not enough for insertions 

in the left-right subtree or the right-left subtree

Simple example: insert(1), insert(6), insert(3)
– Second wrong idea:single rotation on the child of the unbalanced 

node
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Doesn’t work!!!
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Bad Case #3: Correct Solution: Double Rotation
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AVL Property violated at this node (“x”)

Double Rotation
1. Rotate between x’s child and grandchild
2. Rotate between x and x’s new child

Step 1 Step 2
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General right-left case: Double Rotation
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After insertion –unbalanced!

After first single rotation – still unbalanced!

After entire double 
rotation – balanced!01/25/2012

The general right-left case (cont.)
• Like in the left-left and right-right cases, the height of the 

subtree after rebalancing is the same as before the insert
– So no ancestor in the tree will need rebalancing

• Does not have to be implemented as two rotations; can just do:
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Easier to remember than you may think:

Move c to grandparent’s position and then put a, b, X, 
U, V, and Z in the right places to get a legal BST

After insertion –unbalanced! After entire double rotation – balanced!

The last case: left-right

• Mirror image of right-left – double rotation
– Again, no new concepts, only new code to write
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After insertion –unbalanced! After entire double rotation – balanced!
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Double rotation: insert(5), step 1
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Double rotation:insert(5), step 2
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AVL Insert - Summary
• Insert as in a BST

• Check back up path for imbalance, which will be 1 of 4 cases:
– node’s left-left grandchild is too tall

– node’s left-right grandchild is too tall

– node’s right-left grandchild is too tall

– node’s right-right grandchild is too tall

• Only one case occurs because tree was balanced before insert

• After the appropriate single or double rotation, the smallest-unbalanced 
subtree has the same height as before the insertion
– So all ancestors are now balanced
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Imbalance at node X

Single Rotation 

1. Rotate between x and child

Double Rotation

1. Rotate between x’s child and grandchild

2. Rotate between x and x’s new child
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Insert into an AVL tree: a b e c d

Student Activity Circle your final answer
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1. single rotation?

2. double rotation?

3. no rotation?

Inserting what integer values 
would cause the tree to need a:

Single and Double Rotations:
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Student Activity
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Insert 3
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Insert 33
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Insert 33: Single Rotation
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Insert 18

Insert(18)
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Insert 18: Single Rotation (oops!)
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Insert 18: Double Rotation (Step #1)
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Insert 18: Double Rotation (Step #2)
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AVL Trees Revisited
• Balance condition:

For every node x,    -1 ≤ balance(x) ≤ 1
– Strong enough : Worst case depth is O(log n)

– Easy to maintain : one single or double rotation

• Guaranteed O(log n) running timefor
– Find ?

– Insert ?

– Delete ?

– buildTree ?
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AVL Trees Revisited
• What extra infodid we maintain in each node?

• Wherewere rotations performed?

• How did we locate this node?


