
Page 1 of 3

CSE 373 Data Structures 12wi, Homework 2

Due at the BEGINNING of class, Friday, 1/20/2012

Here are some questions on complexity and algorithm analysis. You only need to turn in

written solutions, although you will need to run some code for one of the problems.

Problems

1. Prove (using Induction) that:

 


N

i

N

i
ii

1

2

1

3)(

Hints: Start with N=1 as the base case, then show how 




1

1

3N

i
i ends up being

equal to 




1

1

2)(
N

i
i .

More hints: You already know what the sum of  

N

i
i

1 is, and you should use the

induction hypothesis  


N

i

N

i
ii

1

2

1

3)(to come up with your answer.

Referring to the induction examples on pages 6 and 7 and the examples from the

slides may be helpful.

2. Order the following functions from slowest growth rate to fastest growth rate.

N
2
, N logN, 2/N, log

2
 N, 2

N
, √ , 56, N

2
log N, N

1.5
,

N
3
,

2
N/2

, log N, N log (N
2
), N log log N, N log

2
 N, N.

If any of the functions grow at the same rate, be sure to indicate this.

3. Suppose T1(N) = O(f(N)) and T2(N) = O(f(N)). Which of the following are true?

a. T1(N) + T2(N) = O(f(N))

b. T1(N) – T2(N) = o(f(N))

c. T1(N) / T2(N) = O(1)

d. T1(N) = O(T2(N))

You do not need to prove an item is true (just saying true is enough for full credit),

but you must give a counter example in order to demonstrate an item is false if you

want full credit. To give a counter example, give values for T1(N), T2(N) and f(N) for

which the statement is false (e.g. “The statement is false if T1(N)=100N, T2(N)=2N
2

and f(N)=N
3
”). Hints: Think about the definitions of big O and little o.

Page 2 of 3

4. For each of the following seven program fragments:

a. Give an analysis of the running time

b. Implement the code in Java, and give the actual running time for several

(at least 4) values of N.

c. Compare your analysis with the actual running times.

For part (b), please turn in a printout of your Java code, (no electronic submission

required). Hints: you will want to use assorted (at least 4) large values of n to get

meaningful experimental results. You may find the library function

System.nanoTime() to be useful in timing code fragments. A link to some Java

code showing an example of timing can be found here:

http://www.cs.washington.edu/education/courses/cse373/12wi/homework/hw02/Timing.java

1) sum = 0;

 for (i = 0; i < n; i++) {

 sum++;

 }

2) sum = 0;
 for (i = 0; i < n; i++) {

 for (j = 0; j < n; j++) {

 sum++;

 }

 }

3) sum = 0;

 for (i = 0; i < n; i++) {

 for (j = 0; j < n * n; j++) {

 sum++;

 }

 }

4) sum = 0;
 for (i = 0; i < n; i++) {

 for (j = 0; j < i; j++) {

 sum++;

 }

 }

5) sum = 0;

 for (i = 0; i < n; i++) {

 for (j = 0; j < i; j++) {

 sum++;

 }

 for (k = 0; k < 8000; k++) {

 sum++;

 }

 }

http://www.cs.washington.edu/education/courses/cse373/12wi/homework/hw02/Timing.java

Page 3 of 3

6) sum = 0;

 for (i = 0; i < n; i++) {

 for (j = 0; j < i * i; j++) {

 sum++;

 }

 }

7) sum = 0;

 for (i = 1; i < n; i++) {

 for (j = 1; j < i*i; j++) {

 if (j % i == 0) {

 for (k = 0; k < j; k++) {

 sum++;

 }

 }

 }

 }

Note that there are THREE parts to this question, do all 3. a) calculate big-O, b) run the

code *for several values of N* (4 or more) and time it, c) talk about what you see. For

part c, be sure to say something about what you saw in your run-times, are they what you

expected based on your big-O calculations? If not, any ideas why not? Graphing the

values you got from part b might be useful for your discussion. Remember that when

giving the big-O running time for a piece of code we always want the tightest bound we

can get.

5. Show that the function 130n + 1140 + 5n
3
 is O(n

3
). (You will need to use the

definition of O(f(n)) to do this. In other words, find values for c and n0 such that

the definition of big-O holds true as we did with the examples in lecture.

