
CSE 373
Data Structures and Algorithms

Lecture 25: B-Trees

Assumptions of Algorithm Analysis

2	

  Big-Oh assumes all operations take the same amount of
time
  Is this really true?

Disk Based Data Structures
  All data structures we have examined are limited to main

memory
  Have been assuming data fits into main memory

  Counter-example: Transaction data of a bank > 1 GB per
day
  Uses secondary storage (e.g., hard disks)
  Operations: insert, delete, searches

3

CPU

Main memory

Disk

Cycles* to access:

Registers

Cache

1

millions

tens

hundreds

*cycle: time it takes to
execute an instruction

Hard Disks

5

  Large amount of storage
but slow access

  Identifying a particular block
takes a long time
  Read or write data in chunks

(“a page”) of 0.5 – 8 KB in
size

  (Newer technology) Solid-
state drives are 50 – 100
times faster
  Still “slow”

Algorithm Analysis

6	

  Running time of disk-based data structures measured
in terms of
  Computing time (CPU)
  Number of disk accesses

  Regular main-memory algorithms that work one data
element at a time can not be "ported" to secondary
storage in a straight forward way

Principles

7	

  Almost all of our data structure is on disk.

  Every time we access a node in the tree it amounts to a
random disk access.

  How can we address this problem?

M-ary Search Tree
  Suppose we devised a search tree with branching factor

M:

  M – 1 keys needed to decide branch to take

  Complete tree has height:

  # Nodes accessed for search:

8

Θ(logMn)

Θ(logMn)	
 	

B-Trees
  Internal nodes store (up to)

M - 1 keys

  Order property:
  Subtree between two keys x

and y contain leaves with
values v such that x ≤ v < y

  Note the “≤”

  Leaf nodes contain
up to L sorted values/
data items (“records”).

9

3 7 12 21

x<3 3≤x<7 7≤x<12 12≤x<21 21≤x

M = 7

B-Tree Structure Properties
  Root (special case)

  Has between 2 and M children (or could be a leaf)

  Internal nodes
  Stores up to M-1 keys
  Have between ceiling(M/2) and M children

  Leaf nodes
  Where data is stored
  Contains between ceiling(L/2) and L data items

10

Leaves are at least ½ full

Nodes are at least ½ full

The tree is perfectly balanced !

B-Tree: Example
  B-Tree with M = 4 (# pointers in internal node)
 and L = 5 (# data items in leaf)

11

1, AB..

4, XY..

6
8
9

10

12
14
16
17

20
22

27
28
32

34
38
39
41

44
47
49

50
60
70

12 44

6 20 27 34 50

All leaves
at the same
depth

Data objects…
which we’ll ignore
in slides

2, GH..

19

24

Definition for later: “neighbor” is the next sibling to the left or right.

Disk Friendliness
  Many keys stored in a node

  Each node is one disk page/block.
  All brought to memory/cache in one disk access.

  Internal nodes contain only keys; only leaf nodes contain
actual data

  What is limiting you from increasing the number of keys
stored in each node?
  The page size

12

Exercise: Computing M and L
  Exercise: If disk block is 4000 bytes, key size is 20 bytes,

pointer size is 4 bytes, and data/value size is 200 bytes, what
should M (# of branches) and L (# of data items per leaf) be
for our B-Tree?

 Solve for M:
 M - 1 keys + M pointers = 20M - 20 + 4M = 24M – 20
 24M - 20 <= 4000
 M = 167

 Solve for L:
 L = 4000 / 200
 L = 20

13

14

B-trees vs. AVL trees
Suppose we have n = 109 (billion) data items:

  Depth of AVL Tree: log2 109 = 30

  Depth of B-Tree with M = 256, L = 256:
 ~ log M / 2109 = log 128109 = 4.3
 (M/2 because keys half-full)

14	

Building a B-Tree with Insertions

15

The empty B-Tree

M = 3 L = 3

Insert(3) Insert(18) Insert(14)
3 3

18

3

14

18

Insert(30)
3

14

18

3

14

18

30

3

14

18

30

16	

M = 3 L = 3

Insert(32)
3

14

18

30

18

3

14

18

30

18

3

14

18

30

18

Insert(36)

3

14

18

30

18
Insert(15)

32

32

36

32

32

36

32

15
17	

M = 3 L = 3

Insert(16)
3

14

15

18

30

18 32

32

36

3

14

15

18

30

18 32

32

36

18

30

18 32

32

36

16

3

14

15

16

15

15 32

18

18	

Insert(12,40,45,38)

3

14

15

16

15

18

30

32

32

36

18

3

12

14

15

16

15

18

30

32 40

32

36

38

18

40

45

19	

M = 3 L = 3

Insertion Algorithm: The Overflow Step

20	

K1 K2 K3 K4 K5

Too big

K0 K3 K6

K1 K2 K4 K5

M = 5

K0 K6

Insertion Algorithm
1.  Insert the key in its leaf in sorted order

2.  If the leaf ends up with L+1 items, overflow!
  Split the leaf into two nodes with each half of the data.
  Add the new leaf to the parent.
  If the parent ends up with M+1 children, overflow!

21

Insertion Algorithm
3. If an internal node ends up with M+1 children, overflow!

  Split the internal node into two nodes each with half the keys.
  Add the new child to the parent
  If the parent ends up with M+1 items, overflow!

4.  If the root ends up with M+1 children, split it in two, and
create new root with two children

22	

This makes the tree deeper!

Delete(32)

3

12

14

15

16

15

18

30

32 40

32

36

38

18

40

45

3

12

14

15

16

15

18

30

40

18

40

45

And Now for Deletion…

23	

36

38

M = 3 L = 3

Delete(15)

3

12

14

15

16

15

18

30

36 40

36

38

18

40

45

3

12

14

16

16

18

30

36 40

36

38

18

40

45

Are we okay?

Leaf not half full!
Are you using that 14?
Can I borrow it?

24	

M = 3 L = 3

3

12

14

16

14

18

30

36 40

36

38

18

40

45

3

12

14

16

16

18

30

36 40

36

38

18

40

45

25	

M = 3 L = 3

Delete(16)

3

12

14

16

14

18

30

36 40

36

38

18

40

45

14

18

30

36 40

36

38

18

40

45

3

12

14

Are you using that 14?

26	

M = 3 L = 3

3

12

14

18

30

36 40

36

38

18

40

45

14

18

30

36 40

36

38

18

40

45

3

12

14

Are you using the node18/30?

27	

M = 3 L = 3

3

12

14

18

30

36 40

36

38

18

40

45

3

12

14

18

18

30

40

36

38

36

40

45

28	

M = 3 L = 3

Delete(14)

3

12

14

18

18

30

40

36

38

36

40

45

3

12

18

18

30

40

36

38

36

40

45

29	

M = 3 L = 3

Delete(18)

3

12

18

18

30

40

36

38

36

40

45

3

12

18

30

40

36

38

36

40

45

30	

M = 3 L = 3

3

12

30

40

36

38

36

40

45

3

12

18

30

40

36

38

36

40

45

31	

M = 3 L = 3

3

12

30

40

36

38

36

40

45

36 40

3

12

30

36

38

40

45

32	

M = 3 L = 3

36 40

3

12

30

36

38

40

45

36 40

3

12

30

36

38

40

45

33	

M = 3 L = 3

Deletion Algorithm: Rotation Step

34	

Too small

K0 K3

K1 K2 K4 K5

K0 K2

K1 K3 K4 K5

This is left rotation. Similarly, right rotation M = 5

Deletion Algorithm: Merging Step

35	

Too small

K2

K1 K3 K4

Can’t	
 get	

smaller	

K1 K2 K3 K4

Too small!

M = 5

Deletion Algorithm
1.  Remove the key from its leaf

2.  If the leaf ends up with fewer than ⎡L/2⎤ items,
underflow!
  Try a left rotation
  If not, try a right rotation
  If not, merge, then check the parent node for underflow

36	

Deletion Slide Two
3.  If an internal node ends up with fewer than ⎡M/2⎤

children, underflow!
  Try a left rotation
  If not, try a right rotation
  If not, merge, then check the parent node for underflow

4.  If the root ends up with only one child, make the child
the new root of the tree

37	

This reduces the height
of the tree!

