CSE 373 Data Structures and Algorithms

Lecture 25: B-Trees

Assumptions of Algorithm Analysis

- Big-Oh assumes all operations take the same amount of time
 - Is this really true?

Disk Based Data Structures

- All data structures we have examined are limited to main memory
 - ▶ Have been assuming data fits into main memory
- Counter-example: Transaction data of a bank > I GB per day
 - Uses secondary storage (e.g., hard disks)
 - Operations: insert, delete, searches

CPU		Cycles* to access:	
		Registers	1
		Cache	tens
		Main memory	hundreds
		> Disk * cycle : time it	millions
		execute an in	

Hard Disks

- Large amount of storage but slow access
- Identifying a particular block takes a long time
 - Read or write data in chunks ("a page") of 0.5 – 8 KB in size
- (Newer technology) Solidstate drives are 50 – 100 times faster
 - Still "slow"

Algorithm Analysis

- Running time of disk-based data structures measured in terms of
 - Computing time (CPU)
 - Number of disk accesses
- Regular main-memory algorithms that work one data element at a time can not be "ported" to secondary storage in a straight forward way

Principles

Almost all of our data structure is on disk.

Every time we access a node in the tree it amounts to a random disk access.

▶ How can we address this problem?

M-ary Search Tree

Suppose we devised a search tree with branching factor M:

- ▶ M I keys needed to decide branch to take
- ▶ Complete tree has height: $\Theta(\log_M n)$
- ▶ # Nodes accessed for search: $\Theta(\log_M n)$

B-Trees

Internal nodes store (up to)M - I keys

M = 7

- Order property:
 - Subtree between two keys x and y contain leaves with values v such that $x \le v < y$
 - Note the "≤"
- Leaf nodes contain up to L sorted values/ data items ("records").

B-Tree Structure Properties

- Root (special case)
 - ▶ Has between 2 and M children (or could be a leaf)
- Internal nodes

Nodes are at least ½ full

- Stores up to M-1 keys
- ▶ Have between ceiling(M/2) and M children
- Leaf nodes

Leaves are at least ½ full

- Where data is stored
- Contains between ceiling(L/2) and L data items

The tree is **perfectly balanced**!

B-Tree: Example

▶ B-Tree with M = 4 (# pointers in internal node) and L = 5(# data items in leaf)

Definition for later: "neighbor" is the next sibling to the left or right.

Disk Friendliness

- Many keys stored in a node
 - Each node is one disk page/block.
 - ▶ All brought to memory/cache in one disk access.
- Internal nodes contain only keys; only leaf nodes contain actual data
- What is limiting you from increasing the number of keys stored in each node?
 - The page size

Exercise: Computing M and L

Exercise: If disk block is 4000 bytes, key size is 20 bytes, pointer size is 4 bytes, and data/value size is 200 bytes, what should M (# of branches) and L (# of data items per leaf) be for our B-Tree?

```
Solve for M:
```

M - I keys + M pointers = 20M - 20 + 4M = 24M - 20 24M - 20 <= 4000 M = 167

Solve for L:

L = 4000 / 200

L = 20

B-trees vs. AVL trees

Suppose we have $n = 10^9$ (billion) data items:

- ▶ Depth of AVL Tree: $log_2 10^9 = 30$
- ▶ Depth of B-Tree with M = 256, L = 256: $\sim \log_{M/2} 10^9 = \log_{128} 10^9 = 4.3$ (M/2 because keys half-full)

Building a B-Tree with Insertions

The empty B-Tree

$$M = 3$$
 $L = 3$

3
14
Insert(30)
14
3
14
3
14
30

$$M = 3$$
 $L = 3$

$$M = 3$$
 $L = 3$

Insertion Algorithm: The Overflow Step

Insertion Algorithm

- Insert the key in its leaf in sorted order
- If the leaf ends up with L+I items, overflow!
 - Split the leaf into two nodes with each half of the data.
 - Add the new leaf to the parent.
 - ▶ If the parent ends up with **M+I** children, **overflow**!

Insertion Algorithm

- 3. If an internal node ends up with **M+1** children, **overflow**!
 - Split the internal node into two nodes each with half the keys.
 - Add the new child to the parent
 - If the parent ends up with **M+1** items, **overflow**!
- 4. If the root ends up with M+I children, split it in two, and create new root with two children

This makes the tree deeper!

And Now for Deletion...

23

Leaf not half full!

Can I borrow it?

24

M = 3 L = 3

$$M = 3$$
 $L = 3$

M = 3 L = 3

Are you using that 14?

Are you using the node18/30?

$$M = 3$$
 $L = 3$

M = 3 L = 3

$$M = 3$$
 $L = 3$

$$M = 3$$
 $L = 3$

Deletion Algorithm: Rotation Step

M = 5

This is *left* rotation. Similarly, *right* rotation

Deletion Algorithm: Merging Step

Deletion Algorithm

- Remove the key from its leaf
- 2. If the leaf ends up with fewer than [L/2] items, underflow!
 - Try a left rotation
 - If not, try a right rotation
 - If not, merge, then check the parent node for underflow

Deletion Slide Two

- If an internal node ends up with fewer than [M/2] children, underflow!
 - Try a left rotation
 - If not, try a right rotation
 - If not, merge, then check the parent node for underflow
- 4. If the root ends up with only one child, make the child the new root of the tree

This reduces the height of the tree!