
CSE 373 
Data Structures and Algorithms 

Lecture 25: B-Trees 



Assumptions of Algorithm Analysis 
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  Big-Oh assumes all operations take the same amount of 
time 
  Is this really true? 



Disk Based Data Structures 
  All data structures we have examined are limited to main 

memory 
  Have been assuming data fits into main memory 

  Counter-example: Transaction data of a bank > 1 GB per 
day 
  Uses secondary storage (e.g., hard disks) 
  Operations: insert, delete, searches 
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CPU 

Main memory 

Disk 

Cycles* to access: 

Registers 

Cache 

1 

millions 

tens 

hundreds 

*cycle: time it takes to 
execute an instruction  



Hard Disks 
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  Large amount of storage 
but slow access 

  Identifying a particular block 
takes a long time 
  Read or write data in chunks 

(“a page”) of 0.5 – 8 KB in 
size 

  (Newer technology) Solid-
state drives are 50 – 100 
times faster 
  Still “slow” 



Algorithm Analysis 
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  Running time of disk-based data structures measured 
in terms of  
  Computing time (CPU) 
  Number of disk accesses 

  Regular main-memory algorithms that work one data 
element at a time can not be "ported" to secondary 
storage in a straight forward way 



Principles 
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  Almost all of our data structure is on disk. 

  Every time we access a node in the tree it amounts to a 
random disk access. 

  How can we address this problem? 



M-ary Search Tree 
  Suppose we devised a search tree with branching factor 

M: 

  M – 1 keys needed to decide branch to take 

  Complete tree has height: 

  # Nodes accessed for search: 
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Θ(logMn)  

Θ(logMn)	
  	
  



B-Trees 
  Internal nodes store (up to) 

M - 1 keys 

  Order property: 
  Subtree between two keys x 

and y contain leaves with 
values v such that x ≤ v < y 

  Note the  “≤” 

  Leaf nodes contain 
up to L sorted values/ 
data items (“records”). 
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3 7 12 21 

x<3 3≤x<7 7≤x<12 12≤x<21 21≤x 

M = 7 



B-Tree Structure Properties 
  Root (special case)  

  Has between 2 and M children (or could be a leaf) 

  Internal nodes  
  Stores up to M-1 keys 
  Have between ceiling(M/2) and M children 

  Leaf nodes 
  Where data is stored 
  Contains between ceiling(L/2) and L data items 
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Leaves are at least ½ full 

Nodes are at least ½ full 

The tree is perfectly balanced ! 



B-Tree: Example 
  B-Tree with M = 4 (# pointers in internal node) 
 and L = 5              (# data items in leaf) 
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6 20 27 34 50 

All leaves  
at the same  
depth 

Data objects… 
which we’ll ignore  
in slides 

2, GH.. 
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Definition for later: “neighbor” is the next sibling to the left or right. 



Disk Friendliness 
  Many keys stored in a node 

  Each node is one disk page/block. 
  All brought to memory/cache in one disk access. 

  Internal nodes contain only keys; only leaf nodes contain 
actual data 

  What is limiting you from increasing the number of keys 
stored in each node? 
  The page size 
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Exercise: Computing M and L 
  Exercise: If disk block is 4000 bytes, key size is 20 bytes, 

pointer size is 4 bytes, and data/value size is 200 bytes, what 
should M (# of branches) and L (# of data items per leaf) be 
for our B-Tree? 

 Solve for M: 
 M - 1 keys + M pointers = 20M - 20 + 4M = 24M – 20 
 24M - 20 <= 4000 
 M = 167 

 Solve for L: 
 L = 4000 / 200 
 L = 20 
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B-trees vs. AVL trees 
Suppose we have n = 109 (billion) data items: 

  Depth of AVL Tree: log2 109 = 30 

  Depth of B-Tree with M = 256, L = 256:  
 ~ log M / 2109 = log 128109 = 4.3 
 (M/2 because keys half-full) 
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Building a B-Tree with Insertions 
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The empty B-Tree 

M = 3     L = 3 
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M = 3     L = 3 
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M = 3     L = 3 



Insert(16) 
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Insert(12,40,45,38) 
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M = 3     L = 3 



Insertion Algorithm: The Overflow Step 
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K1 K2 K3 K4 K5 

Too big 

K0 K3 K6 

K1 K2 K4 K5 

M = 5 

K0 K6 



Insertion Algorithm 
1.  Insert the key in its leaf in sorted order 

2.  If the leaf ends up with L+1 items, overflow! 
  Split the leaf into two nodes with each half of the data. 
  Add the new leaf to the parent. 
  If the parent ends up with M+1 children, overflow! 
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Insertion Algorithm 
3.  If an internal node ends up with M+1 children, overflow! 

  Split the internal node into two nodes each with half the keys. 
  Add the new child to the parent 
  If the parent ends up with M+1 items, overflow! 

4.  If the root ends up with M+1 children, split it in two, and 
create new root with two children 
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This makes the tree deeper! 



Delete(32) 
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And Now for Deletion… 
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Delete(15) 
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Are we okay? 

Leaf not half full! 
Are you using that 14? 
Can I borrow it? 

24	
  

M = 3     L = 3 
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M = 3     L = 3 
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M = 3     L = 3 
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M = 3     L = 3 
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M = 3     L = 3 
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M = 3     L = 3 
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M = 3     L = 3 
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M = 3     L = 3 
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M = 3     L = 3 
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M = 3     L = 3 



Deletion Algorithm: Rotation Step 
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Too small 

K0 K3 

K1 K2 K4 K5 

K0 K2 

K1 K3 K4 K5 

This is left rotation.  Similarly, right rotation M = 5 



Deletion Algorithm: Merging Step 
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Too small! 

M = 5 



Deletion Algorithm 
1.  Remove the key from its leaf 

2.  If the leaf ends up with fewer than ⎡L/2⎤ items, 
underflow! 
  Try a left rotation 
  If not, try a right rotation 
  If not, merge, then check the parent node for underflow 
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Deletion Slide Two 
3.  If an internal node ends up with fewer than ⎡M/2⎤ 

children, underflow! 
  Try a left rotation 
  If not, try a right rotation 
  If not, merge, then check the parent node for underflow 

4.  If the root ends up with only one child, make the child 
the new root of the tree 
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This reduces the height 
of the tree! 


