CSE 373
Data Structures and Algorithms

Lecture 25: B-Trees




Assumptions of Algorithm Analysis

» Big-Oh assumes all operations take the same amount of
time

s this really true!?



Disk Based Data Structures

» All data structures we have examined are limited to main
memory

Have been assuming data fits into main memory

» Counter-example: Transaction data of a bank > | GB per
day
Uses secondary storage (e.g., hard disks)

Operations: insert, delete, searches



CPU

Cycles* to access:

Registers 1
Cache tens
Main memory hundreds

T = R
Disk millions

*cycle: time it takes to
~_____J  execute an instruction




Hard Disks

» Large amount of storage
but slow access From above e

» ldentifying a particular block
takes a long time

Read or write data in chunks
(“a page”) of 0.5 -8 KB in
size

» (Newer technology) Solid-
state drives are 50 — 100
times faster

Still “slow”




Algorithm Analysis

» Running time of disk-based data structures measured
in terms of
Computing time (CPU)

Number of disk accesses

» Regular main-memory algorithms that work one data
element at a time can not be "ported” to secondary
storage in a straight forward way



Principles

» Almost all of our data structure is on disk.

» Every time we access a node in the tree it amounts to a
random disk access.

» How can we address this problem!?



M-ary Search Tree

» Suppose we devised a search tree with branching factor

M:
Q.

C ® ® ® o
53000 SB000 BAB0 BB Sdbie
» M — | keys needed to decide branch to take

» Complete tree has height: ©(log,,n)

» # Nodes accessed for search: ©(log,n)



B-Trees

» Internal nodes store (up to)
M- | keys

M=7
» Order property:

Subtree between two keys x 3070112)21 I I
and y contain leaves with
values v such that x = v <y
Note the “<”
» Leaf nodes contain
up to L sorted values/
data items (“records”). x<3\ Aex<  Fex<ih A2ex<oN /1<y




B-Tree Structure Properties

» Root (special case)

Has between 2 and M children (or could be a leaf)

» Internal nodes Nodes are at least ¥ full

Stores up to M-1 keys
Have between ceiling(M/2) and M children

» Leaf nodes
Leaves are at least V% full

Where data is stored
Contains between ceiling(L/2) and L data items

The tree is perfectly balanced !
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B-Tree: Example

» B-Tree with M = 4 (# pointers in internal node)

andL =5 (# data items in leaf)
Data objects... 12§44 I
which we’ll ignore
in slides
20 127 134 50
ILAB..| |6 12| |20] |27] |34 44| |50
2,GH.| |8 14| |22| |28] |38 47| | 60| Al leaves
4,XY..| |9 16| |24| |32] |39 49| | 70| at the same
10 17 4 depth
19

Definition for later:“neighbor” is the next sibling to the left or right.
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Disk Friendliness

» Many keys stored in a node
Each node is one disk page/block.

All brought to memory/cache in one disk access.

» Internal nodes contain only keys; only leaf nodes contain
actual data

» What is limiting you from increasing the number of keys
stored in each node!

The page size
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Exercise: Computing M and L

» Exercise: If disk block is 4000 bytes, key size is 20 bytes,
pointer size is 4 bytes, and data/value size is 200 bytes, what
should M (# of branches) and L (# of data items per leaf) be

for our B-Tree!?

Solve for M:

M- | keys + M pointers = 20M - 20 + 4M = 24M - 20
24M - 20 <= 4000

M=167

Solve for L:
L = 4000/ 200
L=20
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B-trees vs. AVL trees

Suppose we have n = 107 (billion) data items:

» Depth of AVL Tree: log, 10? = 30
» Depth of B-Tree with M = 256, L = 256:

~ log ,,10% = log |,4107 = 4.3
(M/2 because keys half-full)

14
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Building a B-Tree with Insertions

Insert(3)

The empty B-Tree
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Insert(32) Insert(36)
14 30 > |14 30 > 114 30 36
32
18 g 32
Insert(15)

3 18 32

M=3 [ =3 14 30 36
15
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Insertion Algorithm: The Overflow Step

FEONNRNEEDN

IKIIKZIKBIK4IK5I IK|IK2I IK4IK5I

Too big
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Insertion Algorithm

I Insert the key in its leaf in sorted order

2. If the leaf ends up with L+1 items, overflow!

Split the leaf into two nodes with each half of the data.
Add the new leaf to the parent.
If the parent ends up with M+1 children, overflow!
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Insertion Algorithm

3. If an internal node ends up with M+I children, overflow!

Split the internal node into two nodes each with half the keys.
Add the new child to the parent
If the parent ends up with M+1 items, overflow!

4. If the root ends up with M+ children, split it in two, and
create new root with two children

This makes the tree deeper!
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And Now for Deletion...

12
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M

23

=3

18
!15 ]
3 15

L=3

I Delete(32) 18 I
>
! 32 @40 ! ! 15 I ! 40 !
18 32 40 3 15 18 36 40
30 36 45 12 16 30 38 43
38 14




18 I Delete(15) 18 I
>
! 15 I 36 Wl 40 ! 16 I 36 Wl 40
3 | |15 8 | |36 16 8 | |36

1 40 3 1
12 16 30 38 45 12 30 38
14 14

Are we okay? _
Are you using that 14?

M=3 [ =3 Leaf not half full! Can | borrow it?
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Delete(14)
36 II > 36 ‘I
! 18 I 40 I 18 I 40 I
3 18 6 40 18 6 40

3 3
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Delete(18)
36 I > 36 I
! 18 I 40 I ! 18 I 40 I
3 18 6 40 3 30 6 40
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Deletion Algorithm: Rotation Step

i-i-I R B H-E<H A K

Eo1-E-H B0 EE-D

Too small

5 This is left rotation. Similarly, right rotation

<
I
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Deletion Algorithm: Merging Step

Too small!

ic-E R HEl HRANE

Il D E-EoE-D

Can’t get
smaller

Too small

<
I

5

35



Deletion Algorithm

I. Remove the key from its leaf

2. If the leaf ends up with fewer than [L/2] items,
underflow!
Try a left rotation
If not, try a right rotation

If not, merge, then check the parent node for underflow
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Deletion Slide Two

3. If an internal node ends up with fewer than [M/2]
children, underflow!

Try a left rotation
If not, try a right rotation

If not, merge, then check the parent node for underflow

4. | If the root ends up with only one child, make the child
the new root of the tree

This reduces the height
of the tree!
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