CSE 373 Data Structures and Algorithms

Lecture 24: Disjoint Sets

Kruskal's Algorithm Implementation

Kruskals():

sort edges in increasing order of length $(e_1, e_2, e_3, ..., e_m)$.

 $T := \{\}.$

for i = 1 to m if e_i does not add a cycle: add e_i to T.

return T.

How can we determine that adding e_i to T won't add a cycle?

Disjoint-set Data Structure

- Keeps track of a set of elements partitioned into a number of disjoint subsets
 - Two sets are *disjoint* if they have no elements in common
- Initially, each element e is a set in itself:
 - e.g., { $\{e_1\}, \{e_2\}, \{e_3\}, \{e_4\}, \{e_5\}, \{e_6\}, \{e_7\}$ }

Operations: Union

- Union(x, y) Combine or merge two sets x and y into a single set
 - Before:
 - $\{\{e_3, e_5, e_7\}, \{e_4, e_2, e_8\}, \{e_9\}, \{e_1, e_6\}\}$

Operations: Find

Determine which set a particular element is in

Useful for determining if two elements are in the same set

Each set has a unique name

- Name is arbitrary; what matters is that find(a) == find(b) is true only if a and b in the same set
- One of the members of the set is the "representative" (i.e. name) of the set

e.g., {{ e_3 , e_5 , e_7 , e_1 , e_6 }, { e_4 , e_2 , e_8 }, { e_9 }}

Operations: Find

Find(x) – return the name of the set containing x.

- $\models \{\{e_3, e_5, e_{7,} e_1, e_6\}, \{e_4, e_2, e_8\}, \{e_9\}\}$
- Find(e_1) = e_5
- Find(e_4) = e_8

Kruskal's Algorithm (Revisited)

Kruskals():

sort edges in increasing order of length $(e_1, e_2, e_3, ..., e_m)$.

initialize disjoint sets.

 $T:=\{\}.$

for i = 1 to m let $e_i = (u, v)$. if find(u) != find(v) union(find(u), find(v)). add e_i to T.

return T.

- What does the disjoint set initialize to?
- Assuming *n* nodes and *m* edges:
 - How many times do we do a union?
 n-1
 - How many times do we do a find?
 2 * m
 - What is the total running time?
 O(m log m + U * n + F * m)

Disjoint Sets with Linked Lists

- Approach I: Create a linked list for each set.
 - Last/first element is representative
 - Cost of union? find?
 - O(1) O(n)
- Approach 2: Create linked list for each set. Every element has a reference to its representative.
 - Last/first element is representative
 - Cost of union? find?
 - O(n) O(1)

Disjoint Sets with Trees

- Observation: trees let us find many elements given one root (i.e. representative)
- Idea: If we reverse the pointers (make them point up from child to parent), we can find a single root from many elements.
- Idea: Use one tree for each subset. The name of the class is the tree root.

Up-Tree for Disjoint Sets

Union Operation

• Union(x, y) – assuming x and y roots, point x to y.

Find Operation

Find(x): follow x to root and return root

Simple Implementation

Array of indices

Union

void Union(int[] up, int x, int y) { // precondition: x and y are roots up[x] = y

Constant Time!

Find

• Exercise: Write an iterative version of Find.

A Bad Case

Improving Find

• Improve union so that find only takes $\Theta(\log n)$

- Union-by-size
- Improve find so that it becomes even better!
 - Path compression

Union by Rank

Union by Rank (also called Union by Size)

Always point the smaller tree to the root of the larger tree

Example Again

Runtime for Find via Union by Rank

- Depth of tree affects running time of Find
- Union by rank only increases tree depth if depth were equal
- Results in O(log n) for Find

Elegant Array Implementation

Union by Rank

void Union(int i, int j) { // i and j are roots wi = weight[i]; wj = weight[j]; if wi < wj then up[i] = j;weight[j] = wi + wj; else up[j] = i;weight[i] = wi + wj;

Kruskal's Algorithm (Revisited)

Kruskals():

sort edges in increasing order of length (e_1 , e_2 , e_3 , ..., e_m).

initialize disjoint sets.

T := {}.

for i = 1 to m let $e_i = (u, v)$. if find(u) != find(v) union(find(u), find(v)). add e_i to T.

return T.

 $|\mathsf{E}| = m \text{ edges, } |\mathsf{V}| = n \text{ nodes}$

- Sort edges: O(m log m)
- Initialization: O(n)
- Finds: O(2 * m * log n)
 = O(m log n)
- Unions: O(n)
- Total running time:
 - $O(m \log m + n + m \log n + n) = O(m \log n)$
 - Note: log n and log m are within a constant factor of one another (Why?)

Path Compression

On a Find operation point all the nodes on the search path directly to the root.

Self-Adjustment Works

Path Compression-Find(x)

Path Compression Exercise:

 Draw the resulting up tree after Find(e) with path compression.

Path Compression Find

```
void PC-Find(int i) {
r = i;
while up[r] \neq 0 do // find root
  r = up[r];
if i \neq r then // compress path
  k = up[i];
  while k ≠ r do
    up[i] = r;
    i = k;
    k = up[k]
return r;
```

Other Applications of Disjoint Sets

Good for applications in need of clustering

- Cities connected by roads
- Cities belonging to the same country
- Connected components of a graph
- Forming equivalence classes (see textbook)
- Maze creation (see textbook)