CSE 373

Data Structures and Algorithms

Lecture 24: Disjoint Sets

Kruskal's Algorithm Implementation

Kruskals():
sort edges in increasing order of length ($\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}, \ldots, \mathrm{e}_{m}$).

$$
T:=\{ \} .
$$

$$
\text { for } i=1 \text { to } m
$$

if e_{i} does not add a cycle:
add e_{i} to T .
return T.

- How can we determine that adding e_{i} to T won't add a cycle?

Disjoint-set Data Structure

- Keeps track of a set of elements partitioned into a number of disjoint subsets
- Two sets are disjoint if they have no elements in common
- Initially, each element e is a set in itself:
be.g., $\left\{\left\{e_{1}\right\},\left\{e_{2}\right\},\left\{e_{3}\right\},\left\{e_{4}\right\},\left\{e_{5}\right\},\left\{e_{6}\right\},\left\{e_{7}\right\}\right\}$

Operations: Union

- Union (x, y) - Combine or merge two sets x and y into a single set
- Before:

$$
\left\{\left\{e_{3}, e_{5}, e_{7}\right\},\left\{e_{4}, e_{2}, e_{8}\right\},\left\{e_{9}\right\},\left\{e_{1}, e_{6}\right\}\right\}
$$

- After Union $\left(e_{5}, e_{1}\right)$:

$$
\left\{\left\{e_{3}, e_{5}, e_{7}, e_{1}, e_{6}\right\},\left\{e_{4}, e_{2}, e_{8}\right\},\left\{e_{9}\right\}\right\}
$$

Operations: Find

- Determine which set a particular element is in
* Useful for determining if two elements are in the same set
- Each set has a unique name
* Name is arbitrary; what matters is that find $(a)==$ find (b) is true only if a and b in the same set
" One of the members of the set is the "representative" (i.e. name) of the set
e.g., $\left\{\left\{\mathrm{e}_{3}, \mathrm{e}_{5}, \mathrm{e}_{7}, \mathrm{e}_{1}, \mathrm{e}_{6}\right\},\left\{\mathrm{e}_{4}, \mathrm{e}_{2}, \mathrm{e}_{8}\right\},\left\{\mathrm{e}_{9}\right\}\right\}$

Operations: Find

- Find (x) - return the name of the set containing x.
- $\left\{\left\{\mathrm{e}_{3}, \mathrm{e}_{5}, \mathrm{e}_{7}, \mathrm{e}_{1}, \mathrm{e}_{6}\right\},\left\{\mathrm{e}_{4}, \mathrm{e}_{2}, \mathrm{e}_{8}\right\},\left\{\mathrm{e}_{9}\right\}\right\}$
- Find $\left(e_{1}\right)=e_{5}$
- Find $\left(e_{4}\right)=e_{8}$

Kruskal's Algorithm (Revisited)

Kruskals():
sort edges in increasing order of length ($\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}, \ldots, \mathrm{e}_{m}$).
initialize disjoint sets.

$$
T:=\{ \} .
$$

$$
\text { for } \mathrm{i}=\mathrm{I} \text { to } \mathrm{m}
$$

let $e_{i}=(u, v)$.
if find(u)!= find(v)
union(find(u), find(v)). add e_{i} to T .

- What does the disjoint set initialize to?
- Assuming n nodes and m edges:
- How many times do we do a union? n-I
- How many times do we do a find? 2 * m
- What is the total running time? $O(m \log m+U * n+F * m)$
return T.

Disjoint Sets with Linked Lists

- Approach I: Create a linked list for each set.
, Last/first element is representative
- Cost of union? find?
$\mathrm{O}(\mathrm{I})$
O(n)
- Approach 2: Create linked list for each set. Every element has a reference to its representative.
- Last/first element is representative
- Cost of union? find?
$\mathrm{O}(\mathrm{n}) \quad \mathrm{O}(\mathrm{I})$

Disjoint Sets with Trees

- Observation: trees let us find many elements given one root (i.e. representative)
- Idea: If we reverse the pointers (make them point up from child to parent), we can find a single root from many elements.
- Idea: Use one tree for each subset. The name of the class is the tree root.

Up-Tree for Disjoint Sets

Initial state

7

Intermediate state

(3)

Roots are the names of each set.

Union Operation

- Union (x, y) - assuming x and y roots, point x to y.

Find Operation

- Find (x) : follow x to root and return root

Find $(6)=7$

Simple Implementation

- Array of indices

Union

Constant Time!

Find

```
int Find(int[] up, int x) {
    // precondition: x is in the range 1 to size
    if up[x] == 0
    return x
    else
        return Find(up, up[x])
}
```

- Exercise:Write an iterative version of Find.

A Bad Case

(1) (2) (3) \cdots (n)

Improving Find

- Improve union so that find only takes $\Theta(\log n)$
- Union-by-size
- Improve find so that it becomes even better!
- Path compression

Union by Rank

- Union by Rank (also called Union by Size)
- Always point the smaller tree to the root of the larger tree

Example Again

(1) (2) (3) \cdots (n)

Union(n-1,n)

Find(1) constant time

Runtime for Find via Union by Rank

- Depth of tree affects running time of Find
- Union by rank only increases tree depth if depth were equal
- Results in $\mathrm{O}(\log n)$ for Find

Elegant Array Implementation

Union by Rank

```
void Union(int i, int j){
    // i and j are roots
    wi = weight[i];
    wj = weight[j];
    if wi < wj then
        up[i] = j;
        weight[j] = wi + wj;
    else
        up[j] = i;
        weight[i] = wi + wj;
}
```

```
Kruskal's Algorithm (Revisited)
```

Kruskals():
${ }_{e_{2}}, e_{3}, \ldots, e_{m}$.
initialize disjoint sets.
$T:=\{ \}$.
for $i=1$ to m
let $\mathrm{e}_{\mathrm{i}}=(u, v)$.
if find $(u)!=$ find (v)
union(find (u), find (v)). add e_{i} to T .
return T.
$|E|=m$ edges, $|V|=n$ nodes

- Sort edges: $O(m \log m)$
- Initialization: $\mathrm{O}(\mathrm{n})$
- Finds: $\mathrm{O}(2 * m * \log n)$

$$
=O(m \log n)
$$

- Unions: $O(n)$
- Total running time: $\mathrm{O}(m \log m+n+m \log n+n)$ $=O(m \log n)$
- Note: $\log n$ and $\log m$ are within a constant factor of one another (Why?)

Path Compression

- On a Find operation point all the nodes on the search path directly to the root.

Self-Adjustment Works

Path Compression-Find(x)

Path Compression Exercise:

- Draw the resulting up tree after Find(e) with path compression.

Path Compression Find

```
Void PC-Find(int i) {
    r = i;
    while up[r] \not= 0 do // find root
        r = up[r];
    if i }\not=r\mathrm{ then // compress path
        k = up[i];
        while k \not= r do
            up[i] = r;
            i = k;
            k = up [k]
    return r;
}
```


Other Applications of Disjoint Sets

- Good for applications in need of clustering
- Cities connected by roads
- Cities belonging to the same country
, Connected components of a graph
- Forming equivalence classes (see textbook)
- Maze creation (see textbook)

