CSE 373
Data Structures and Algorithms

Lecture 24: Disjoint Sets

Kruskal's Algorithm Implementation

Kruskals():
sort edges in increasing order of length (e, e,, €, ..., €,).

T:={}.

fori=1tom
if e, does not add a cycle:
add e; to 1.

return 1.

> H0\|N7can we determine that adding e, to T won't add a
cycle!

2

Disjoint-set Data Structure

» Keeps track of a set of elements partitioned into a
number of disjoint subsets

Two sets are disjoint if they have no elements in common

» Initially, each element e is a set in itself:

e.g.,{ {e\} {e,}: {es} {eh {es) {ec) {es}}

Operations: Union

» Union(x, y) — Combine or merge two sets x and y into a
single set

Before:

{{es, e5, €7}, {e4 €y, g}, {eg}, {€), e}}

After Union(e, e)):

{{es &5, €7.€p ee) »{es €y egh {e9}}

Operations: Find

» Determine which set a particular element is in

Useful for determining if two elements are in the same set

» Each set has a unique name

Name is arbitrary; what matters is that find(a) == find(b) is
true only if a and b in the same set

One of the members of the set is the "representative” (i.e.
name) of the set

e.g, {{es es, €7 € e} »{e4 € egh {e}}

Operations: Find

» Find(x) — return the name of the set containing x.
{es, e5 67 €1, 64}, {e4, € €} {eo}}
Find(e|) = e
Find(e,) = eg

Kruskal's Algorithm (Revisited)

Kruskals(): » What does the disjoint set initialize to?
sort edges in increasing order of length) Assuming n nodes and m edges:
(&1, €2 €3 €. How many times do we do a union?

n-1
initialize disjoint sets.

How many times do we do a find?
T:={} 2*m
fori=1tom What is the total running time?
O(mlogm+ U *n + F*m)

add e toT.

returnT.

Disjoint Sets with Linked Lists

» Approach |: Create a linked list for each set.
Last/first element is representative

Cost of union? find?

O(l) O(n)

» Approach 2: Create linked list for each set. Every element
has a reference to its representative.

Last/first element is representative

Cost of union? find?

O(n) O(l)

Disjoint Sets with Trees

» Observation: trees let us find many elements given one
root (i.e. representative)

» ldea: If we reverse the pointers (make them point up from
child to parent), we can find a single root from many
elements.

» ldea: Use one tree for each subset. The name of the class
is the tree root.

Up-Tree for Disjoint Sets

nicalsaee (1) (2) @) @ & () @

emede Q@) @
b g

Roots are the names of each set. @

10

Union Operation

» Union(x, y) — assuming x and y roots, point x to y.

Union(1,7)

)
o g
(&)

11

Find Operation

» Find(x): follow x to root and return root

) €
o g
Find(6) = 7 r@/

12

Simple Implementation

» Array of indices

Up[x] = 0 means
X is a root.

up | O

13

Union

void Union (int[] up, int x, int y) {
// precondition: x and y are roots
up[x] =y

Constant Time!

14

Find

int Find(int[] up, int x) {

// precondition: x is in the range 1 to size
1f upl[x] ==

else

return X

return Find (up,

up [x])

» Exercise:VWrite an iterative version of Find.

15

A Bad Case

® @ ® - O

6' /@ @ Unic.>n(2,3)

@ Union(n-1, n)

£/® Find(l) n steps!!

o

Union(1,2)

16

Improving Find

» Improve union so that find only takes O(log n)

Union-by-size

» Improve find so that it becomes even better!

Path compression

17

Union by Rank
» Union by Rank (also called Union by Size)

Always point the smaller tree to the root of the larger tree

Union(1,7)

2 1 (3) 4
o §e
(&)

18

Example Again

© @ ©® - O
@@...@

G{ Union(2,3)
/@}3} e @ |

@

@% Union(n-1,n)
6 "t Find(1) constant time

Union(1,2)

19

Runtime for Find via Union by Rank

» Depth of tree affects running time of Find

» Union by rank only increases tree depth if depth were
equal

» Results in O(log n) for Find

20

Elegant Array Implementation

KT A

@ & @
(&)
1 2 3 4 5 6 7
up 110(7|7(5]0
weight 1 4

21

Union by Rank

void Union (int i, int 7j) {
// i and J are roots
wl = weight[1i];
wj] = welight[]];
1f wi < wj then

up[i] = J;

weight[J] = wi + wj;
else

up[J] = 1;

weight[i] = wi + wj;

22

Kruskal's Algorithm (Revisited)

Kruskals(): — —
sort edges i increasing order of length (e,, ” |E| - m edgES, |V| = n nodes

€, €, 2, e).
€ & » Sort edges: O(m log m)
initialize disjoint sets. SISRT .
» Initialization: O(n)
T:={} .
H » Finds: O(2 * m * log n)

fori=1tom

= O(m log n)
» Unions: O(n)

adde; toT.
return 1. » Total running time:
O (mlogm+n+mlogn+n)
= O(m log n)

Note: log n and log m are within a

constant factor of one another
(Why?)

23

Path Compression

» On a Find operation point all the nodes on the search
path directly to the root.

24

Self-Adjustment Works

=
VIVIVIVIVIN

Path Compression-Find(x)

TN
TN
TN
TN
T
A
</

Path Compression Exercise:

» Draw the resulting up tree after Find(e) with path
compression.

Path Compression Find

vold PC-Find(int 1) {
r = 1;
while upl[r] = 0 do // find root
r = uplr];
if 1 # r then // compress path
k = upl[1];
while k = r do
upli] = r;
1 = k;

return r;

27

Other Applications of Disjoint Sets

» Good for applications in need of clustering
Cities connected by roads
Cities belonging to the same country
Connected components of a graph

» Forming equivalence classes (see textbook)

» Maze creation (see textbook)

28

