
CSE 373 
Data Structures and Algorithms 

Lecture 24: Disjoint Sets 



Kruskal's Algorithm Implementation 
Kruskals(): 
    sort edges in increasing order of length (e1, e2, e3, ..., em). 

    T := {}. 

    for i = 1 to m 
        if ei  does not add a cycle: 
            add ei to T. 

    return T. 

  How can we determine that adding ei to T won't add a 
cycle? 

2	  



Disjoint-set Data Structure 
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  Keeps track of a set of elements partitioned into a 
number of disjoint subsets 
  Two sets are disjoint if they have no elements in common 

  Initially, each element e is a set in itself: 
  e.g., { {e1}, {e2}, {e3}, {e4}, {e5}, {e6}, {e7}} 



Operations: Union 
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  Union(x, y) – Combine or merge two sets x and y into a 
single set 
  Before:  

 {{e3, e5, e7} , {e4, e2, e8}, {e9}, {e1, e6}} 

  After Union(e5, e1):  
 {{e3, e5, e7, e1, e6} , {e4, e2, e8}, {e9}} 



Operations: Find 
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  Determine which set a particular element is in 
  Useful for determining if two elements are in the same set 

  Each set has a unique name 
  Name is arbitrary; what matters is that find(a) == find(b) is 

true only if a and b in the same set 
  One of the members of the set is the "representative" (i.e. 

name) of the set 
 e.g., {{e3, e5, e7, e1, e6} , {e4, e2, e8}, {e9}} 



Operations: Find 

6	  

  Find(x) – return the name of the set containing x. 
  {{e3, e5, e7, e1, e6} , {e4, e2, e8}, {e9}} 
  Find(e1) = e5 

  Find(e4) = e8 



Kruskal's Algorithm (Revisited) 
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Kruskals(): 
    sort edges in increasing order of length 

(e1, e2, e3, ..., em). 

    initialize disjoint sets. 

    T := {}. 

    for i = 1 to m 
        let ei = (u, v). 
        if find(u) != find(v) 
            union(find(u), find(v)). 
            add ei to T. 

    return T. 

  What does the disjoint set initialize to? 
  Assuming n nodes and m edges: 

  How many times do we do a union? 
 n-1 

  How many times do we do a find? 
 2 * m 

  What is the total running time? 
 O(m log m + U * n + F * m) 



Disjoint Sets with Linked Lists 
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  Approach 1: Create a linked list for each set. 
  Last/first element is representative 
  Cost of union?  find? 

  O(1)   O(n) 

  Approach 2: Create linked list for each set.  Every element 
has a reference to its representative. 
  Last/first element is representative 
  Cost of union?  find? 

  O(n)   O(1) 



Disjoint Sets with Trees 
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  Observation: trees let us find many elements given one 
root (i.e. representative) 

  Idea: If we reverse the pointers (make them point up from 
child to parent), we can find a single root from many 
elements. 

  Idea: Use one tree for each subset.  The name of the class 
is the tree root. 



Up-Tree for Disjoint Sets 
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1 2 3 4 5 6 7 Initial state 

1 
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4 5 

6 

7 Intermediate 
state 

Roots are the names of each set. 



Union Operation 
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  Union(x, y) – assuming x and y roots, point x to y. 
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 Union(1, 7) 



Find Operation 
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  Find(x): follow x to root and return root 
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6 
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Find(6) = 7 



Simple Implementation 
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  Array of indices 

1 

2 

3 

4 5 

6 

7 

0 1 0 7 7 5 0 

1     2    3    4    5    6    7 

up 

Up[x] = 0 means 
x is a root. 



Union 
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void Union(int[] up, int x, int y) { 
    // precondition: x and y are roots 
    up[x] = y 
} 

Constant Time! 



Find 
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  Exercise: Write an iterative version of Find. 

int Find(int[] up, int x) { 
    // precondition: x is in the range 1 to size 
    if up[x] == 0 
        return x 
    else  
        return Find(up, up[x]) 
} 



 A Bad Case 
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1 2 3 n … 

1 

2 3 n 
Union(1,2) 

1 

2 

3 n 

Union(2,3) 

Union(n-‐1,	  n)	  

… 

… 

1 

2 

3 

n 

: 

Find(1)   n steps!! 



Improving Find 
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  Improve union so that find only takes Θ(log n) 
  Union-by-size 

  Improve find so that it becomes even better! 
  Path compression 



Union by Rank 
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  Union by Rank (also called Union by Size) 
  Always point the smaller tree to the root of the larger tree 
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7 

Union(1,7) 

2 4 1 



Example Again 
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1 2 3 n 

1 

2 3 n 
Union(1,2) 

1 

2 

3 

n 

Union(2,3) 

Union(n-1,n) 

… 

… 
: 
: 

1 

2 

3 n 

… 

Find(1)   constant time … 



Runtime for Find via Union by Rank 
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  Depth of tree affects running time of Find 
  Union by rank only increases tree depth if depth were 

equal 
  Results in O(log n) for Find 

Find 

log2n 



Elegant Array Implementation 
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7 7 5 0 

4 

1     2    3    4    5    6    7   

up 
weight 



Union by Rank 
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void Union(int i, int j){ 
  // i and j are roots 
  wi = weight[i]; 
  wj = weight[j]; 
  if wi < wj then 
    up[i] = j; 
    weight[j] = wi + wj; 
  else 
    up[j] = i; 
    weight[i] = wi + wj; 
} 



Kruskal's Algorithm (Revisited) 
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Kruskals(): 
    sort edges in increasing order of length (e1, e2, e3, ..., em). 

    initialize disjoint sets. 

    T := {}. 

    for i = 1 to m 
        let ei = (u, v). 
        if find(u) != find(v) 
            union(find(u), find(v)). 
            add ei to T. 

    return T. 

  |E| = m edges, |V| = n nodes 
  Sort edges: O(m log m) 
  Initialization: O(n) 
  Finds: O(2 * m * log n) 
   = O(m log n) 

  Unions: O(n) 

  Total running time: 
 O (m log m + n + m log n + n) 
= O(m log n) 
  Note: log n and log m are within a 

constant factor of one another 
(Why?) 



Path Compression 
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  On a Find operation point all the nodes on the search 
path directly to the root. 
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Find(3) 
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Self-Adjustment Works 
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Path Compression-Find(x) 

x 



Path Compression Exercise: 
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  Draw the resulting up tree after Find(e) with path 
compression. 

f h a 

b 

c 

d 

e 

g 

i 



Path Compression Find 
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void PC-Find(int i) { 
  r = i; 
  while up[r] ≠ 0 do // find root 
    r = up[r]; 
  if i ≠ r then  // compress path 
    k = up[i]; 
    while k ≠ r do 
      up[i] = r; 
      i = k; 
      k = up[k] 
  return r; 
} 



Other Applications of Disjoint Sets 
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  Good for applications in need of clustering 
  Cities connected by roads 
  Cities belonging to the same country 
  Connected components of a graph 

  Forming equivalence classes (see textbook) 

  Maze creation (see textbook) 


