
CSE 373
Data Structures and Algorithms

Lecture 24: Disjoint Sets

Kruskal's Algorithm Implementation
Kruskals():
 sort edges in increasing order of length (e1, e2, e3, ..., em).

 T := {}.

 for i = 1 to m
 if ei does not add a cycle:
 add ei to T.

 return T.

  How can we determine that adding ei to T won't add a
cycle?

2	

Disjoint-set Data Structure

3	

  Keeps track of a set of elements partitioned into a
number of disjoint subsets
  Two sets are disjoint if they have no elements in common

  Initially, each element e is a set in itself:
  e.g., { {e1}, {e2}, {e3}, {e4}, {e5}, {e6}, {e7}}

Operations: Union

4	

  Union(x, y) – Combine or merge two sets x and y into a
single set
  Before:

 {{e3, e5, e7} , {e4, e2, e8}, {e9}, {e1, e6}}

  After Union(e5, e1):
 {{e3, e5, e7, e1, e6} , {e4, e2, e8}, {e9}}

Operations: Find

5	

  Determine which set a particular element is in
  Useful for determining if two elements are in the same set

  Each set has a unique name
  Name is arbitrary; what matters is that find(a) == find(b) is

true only if a and b in the same set
  One of the members of the set is the "representative" (i.e.

name) of the set
 e.g., {{e3, e5, e7, e1, e6} , {e4, e2, e8}, {e9}}

Operations: Find

6	

  Find(x) – return the name of the set containing x.
  {{e3, e5, e7, e1, e6} , {e4, e2, e8}, {e9}}
  Find(e1) = e5

  Find(e4) = e8

Kruskal's Algorithm (Revisited)

7	

Kruskals():
 sort edges in increasing order of length

(e1, e2, e3, ..., em).

 initialize disjoint sets.

 T := {}.

 for i = 1 to m
 let ei = (u, v).
 if find(u) != find(v)
 union(find(u), find(v)).
 add ei to T.

 return T.

  What does the disjoint set initialize to?
  Assuming n nodes and m edges:

  How many times do we do a union?
 n-1

  How many times do we do a find?
 2 * m

  What is the total running time?
 O(m log m + U * n + F * m)

Disjoint Sets with Linked Lists

8	

  Approach 1: Create a linked list for each set.
  Last/first element is representative
  Cost of union? find?

 O(1) O(n)

  Approach 2: Create linked list for each set. Every element
has a reference to its representative.
  Last/first element is representative
  Cost of union? find?

 O(n) O(1)

Disjoint Sets with Trees

9

  Observation: trees let us find many elements given one
root (i.e. representative)

  Idea: If we reverse the pointers (make them point up from
child to parent), we can find a single root from many
elements.

  Idea: Use one tree for each subset. The name of the class
is the tree root.

Up-Tree for Disjoint Sets

10	

1 2 3 4 5 6 7 Initial state

1

2

3

4 5

6

7 Intermediate
state

Roots are the names of each set.

Union Operation

11

  Union(x, y) – assuming x and y roots, point x to y.

1

2

3

4 5

6

7

 Union(1, 7)

Find Operation

12

  Find(x): follow x to root and return root

1

2

3

4 5

6

7

Find(6) = 7

Simple Implementation

13	

  Array of indices

1

2

3

4 5

6

7

0 1 0 7 7 5 0

1 2 3 4 5 6 7

up

Up[x] = 0 means
x is a root.

Union

14	

void Union(int[] up, int x, int y) {
 // precondition: x and y are roots
 up[x] = y
}

Constant Time!

Find

15	

  Exercise: Write an iterative version of Find.

int Find(int[] up, int x) {
 // precondition: x is in the range 1 to size
 if up[x] == 0
 return x
 else
 return Find(up, up[x])
}

 A Bad Case

16	

1 2 3 n …

1

2 3 n
Union(1,2)

1

2

3 n

Union(2,3)

Union(n-­‐1,	
 n)	

…

…

1

2

3

n

:

Find(1) n steps!!

Improving Find

17

  Improve union so that find only takes Θ(log n)
  Union-by-size

  Improve find so that it becomes even better!
  Path compression

Union by Rank

18

  Union by Rank (also called Union by Size)
  Always point the smaller tree to the root of the larger tree

1

2

3

4 5

6

7

Union(1,7)

2 4 1

Example Again

19	

1 2 3 n

1

2 3 n
Union(1,2)

1

2

3

n

Union(2,3)

Union(n-1,n)

…

…
:
:

1

2

3 n

…

Find(1) constant time …

Runtime for Find via Union by Rank

20

  Depth of tree affects running time of Find
  Union by rank only increases tree depth if depth were

equal
  Results in O(log n) for Find

Find

log2n

Elegant Array Implementation

21	

1

2

3

4 5

6

7 2 4 1

0

2

1 0

1

7 7 5 0

4

1 2 3 4 5 6 7

up
weight

Union by Rank

22	

void Union(int i, int j){
 // i and j are roots
 wi = weight[i];
 wj = weight[j];
 if wi < wj then
 up[i] = j;
 weight[j] = wi + wj;
 else
 up[j] = i;
 weight[i] = wi + wj;
}

Kruskal's Algorithm (Revisited)

23	

Kruskals():
 sort edges in increasing order of length (e1, e2, e3, ..., em).

 initialize disjoint sets.

 T := {}.

 for i = 1 to m
 let ei = (u, v).
 if find(u) != find(v)
 union(find(u), find(v)).
 add ei to T.

 return T.

  |E| = m edges, |V| = n nodes
  Sort edges: O(m log m)
  Initialization: O(n)
  Finds: O(2 * m * log n)
 = O(m log n)

  Unions: O(n)

  Total running time:
 O (m log m + n + m log n + n)
= O(m log n)
  Note: log n and log m are within a

constant factor of one another
(Why?)

Path Compression

24

  On a Find operation point all the nodes on the search
path directly to the root.

1

2

3

4 5

6

7 1

2 3 4 5 6

7

Find(3)

8 9

10

8 9 10

Self-Adjustment Works

25	

Path Compression-Find(x)

x

Path Compression Exercise:

26

  Draw the resulting up tree after Find(e) with path
compression.

f h a

b

c

d

e

g

i

Path Compression Find

27	

void PC-Find(int i) {
 r = i;
 while up[r] ≠ 0 do // find root
 r = up[r];
 if i ≠ r then // compress path
 k = up[i];
 while k ≠ r do
 up[i] = r;
 i = k;
 k = up[k]
 return r;
}

Other Applications of Disjoint Sets

28

  Good for applications in need of clustering
  Cities connected by roads
  Cities belonging to the same country
  Connected components of a graph

  Forming equivalence classes (see textbook)

  Maze creation (see textbook)

