
CSE 373
Data Structures and Algorithms

Lecture 24: Disjoint Sets

Kruskal's Algorithm Implementation
Kruskals():
 sort edges in increasing order of length (e1, e2, e3, ..., em).

 T := {}.

 for i = 1 to m
 if ei does not add a cycle:
 add ei to T.

 return T.

  How can we determine that adding ei to T won't add a
cycle?

2	

Disjoint-set Data Structure

3	

  Keeps track of a set of elements partitioned into a
number of disjoint subsets
  Two sets are disjoint if they have no elements in common

  Initially, each element e is a set in itself:
  e.g., { {e1}, {e2}, {e3}, {e4}, {e5}, {e6}, {e7}}

Operations: Union

4	

  Union(x, y) – Combine or merge two sets x and y into a
single set
  Before:

 {{e3, e5, e7} , {e4, e2, e8}, {e9}, {e1, e6}}

  After Union(e5, e1):
 {{e3, e5, e7, e1, e6} , {e4, e2, e8}, {e9}}

Operations: Find

5	

  Determine which set a particular element is in
  Useful for determining if two elements are in the same set

  Each set has a unique name
  Name is arbitrary; what matters is that find(a) == find(b) is

true only if a and b in the same set
  One of the members of the set is the "representative" (i.e.

name) of the set
 e.g., {{e3, e5, e7, e1, e6} , {e4, e2, e8}, {e9}}

Operations: Find

6	

  Find(x) – return the name of the set containing x.
  {{e3, e5, e7, e1, e6} , {e4, e2, e8}, {e9}}
  Find(e1) = e5

  Find(e4) = e8

Kruskal's Algorithm (Revisited)

7	

Kruskals():
 sort edges in increasing order of length

(e1, e2, e3, ..., em).

 initialize disjoint sets.

 T := {}.

 for i = 1 to m
 let ei = (u, v).
 if find(u) != find(v)
 union(find(u), find(v)).
 add ei to T.

 return T.

  What does the disjoint set initialize to?
  Assuming n nodes and m edges:

  How many times do we do a union?
 n-1

  How many times do we do a find?
 2 * m

  What is the total running time?
 O(m log m + U * n + F * m)

Disjoint Sets with Linked Lists

8	

  Approach 1: Create a linked list for each set.
  Last/first element is representative
  Cost of union? find?

 O(1) O(n)

  Approach 2: Create linked list for each set. Every element
has a reference to its representative.
  Last/first element is representative
  Cost of union? find?

 O(n) O(1)

Disjoint Sets with Trees

9

  Observation: trees let us find many elements given one
root (i.e. representative)

  Idea: If we reverse the pointers (make them point up from
child to parent), we can find a single root from many
elements.

  Idea: Use one tree for each subset. The name of the class
is the tree root.

Up-Tree for Disjoint Sets

10	

1 2 3 4 5 6 7 Initial state

1

2

3

4 5

6

7 Intermediate
state

Roots are the names of each set.

Union Operation

11

  Union(x, y) – assuming x and y roots, point x to y.

1

2

3

4 5

6

7

 Union(1, 7)

Find Operation

12

  Find(x): follow x to root and return root

1

2

3

4 5

6

7

Find(6) = 7

Simple Implementation

13	

  Array of indices

1

2

3

4 5

6

7

0 1 0 7 7 5 0

1 2 3 4 5 6 7

up

Up[x] = 0 means
x is a root.

Union

14	

void Union(int[] up, int x, int y) {
 // precondition: x and y are roots
 up[x] = y
}

Constant Time!

Find

15	

  Exercise: Write an iterative version of Find.

int Find(int[] up, int x) {
 // precondition: x is in the range 1 to size
 if up[x] == 0
 return x
 else
 return Find(up, up[x])
}

 A Bad Case

16	

1 2 3 n …

1

2 3 n
Union(1,2)

1

2

3 n

Union(2,3)

Union(n-‐1,	 n)	

…

…

1

2

3

n

:

Find(1) n steps!!

Improving Find

17

  Improve union so that find only takes Θ(log n)
  Union-by-size

  Improve find so that it becomes even better!
  Path compression

Union by Rank

18

  Union by Rank (also called Union by Size)
  Always point the smaller tree to the root of the larger tree

1

2

3

4 5

6

7

Union(1,7)

2 4 1

Example Again

19	

1 2 3 n

1

2 3 n
Union(1,2)

1

2

3

n

Union(2,3)

Union(n-1,n)

…

…
:
:

1

2

3 n

…

Find(1) constant time …

Runtime for Find via Union by Rank

20

  Depth of tree affects running time of Find
  Union by rank only increases tree depth if depth were

equal
  Results in O(log n) for Find

Find

log2n

Elegant Array Implementation

21	

1

2

3

4 5

6

7 2 4 1

0

2

1 0

1

7 7 5 0

4

1 2 3 4 5 6 7

up
weight

Union by Rank

22	

void Union(int i, int j){
 // i and j are roots
 wi = weight[i];
 wj = weight[j];
 if wi < wj then
 up[i] = j;
 weight[j] = wi + wj;
 else
 up[j] = i;
 weight[i] = wi + wj;
}

Kruskal's Algorithm (Revisited)

23	

Kruskals():
 sort edges in increasing order of length (e1, e2, e3, ..., em).

 initialize disjoint sets.

 T := {}.

 for i = 1 to m
 let ei = (u, v).
 if find(u) != find(v)
 union(find(u), find(v)).
 add ei to T.

 return T.

  |E| = m edges, |V| = n nodes
  Sort edges: O(m log m)
  Initialization: O(n)
  Finds: O(2 * m * log n)
 = O(m log n)

  Unions: O(n)

  Total running time:
 O (m log m + n + m log n + n)
= O(m log n)
  Note: log n and log m are within a

constant factor of one another
(Why?)

Path Compression

24

  On a Find operation point all the nodes on the search
path directly to the root.

1

2

3

4 5

6

7 1

2 3 4 5 6

7

Find(3)

8 9

10

8 9 10

Self-Adjustment Works

25	

Path Compression-Find(x)

x

Path Compression Exercise:

26

  Draw the resulting up tree after Find(e) with path
compression.

f h a

b

c

d

e

g

i

Path Compression Find

27	

void PC-Find(int i) {
 r = i;
 while up[r] ≠ 0 do // find root
 r = up[r];
 if i ≠ r then // compress path
 k = up[i];
 while k ≠ r do
 up[i] = r;
 i = k;
 k = up[k]
 return r;
}

Other Applications of Disjoint Sets

28

  Good for applications in need of clustering
  Cities connected by roads
  Cities belonging to the same country
  Connected components of a graph

  Forming equivalence classes (see textbook)

  Maze creation (see textbook)

