CSE 373
Data Structures and Algorithms

Lecture 23: Graphs V

Topological Sort

Problem: Find an order in
which all these courses can
be taken.

Example: 142 - 143 - 331
- 351 2 311 2 332 - 312
-2 421 - 401

In order to take a course, you must
take all of its prerequisites first

Topological Sort

» In G = (V, E), find total ordering of vertices such that for
any edge (v, w), v precedes w in the ordering

Topological Sort: Good Example

» Any total ordering in which all the arrows go to the
right is a valid solution

)
® ¥
. @|®)|®|O1AE)

Note that F can go anywhere in this list because it is not connected.
Also the solution is not unique.

Topological Sort: Bad Example

» Any ordering in which an arrow goes to the left is not
a valid solution

(F)
Ly
©

Only acyclic graphs can be topo sorted

» A directed graph with a cycle cannot be topologically
sorted.

Topological Sort Algorithm: Step 1

» Step |: Identify vertices that have no incoming edges
The “in-degree” of these vertices is zero

Topological Sort Algorithm: Step la

» Step |: Identify vertices that have no incoming edges
If no such vertices, graph has cycle(s)

Topological sort not possible — Halt.

/

Example of a cyclic graph

Topological Sort Algorithm: Step 1b

» Step |: Identify vertices that have no incoming edges

Select one such vertex

Select

Topological Sort Algorithm: Step 2

» Step 2: Delete this vertex of in-degree 0 and all its
outgoing edges from the graph. Place it in the output.

10

Topological Sort Algorithm: Repeat
» Repeat Step | and Step 2 until graph is empty

Select

11

B

» Select B. Copy to sorted list. Delete B and its edges.

12

C

» Select C. Copy to sorted list. Delete C and its edges.

13

D

» Select D. Copy to sorted list. Delete D and its edges.

14

(]

F

» Select E. Copy to sorted list. Delete E and its edges.
» Select F Copy to sorted list. Delete F and its edges.

77N
/ \
[1
\ 1
_/,

15

Done

Topological Sort Algorithm

17

Store each vertex’s In-Degree in an hash table D
Initialize queue with all “in-degree=0" vertices

While there are vertices remaining in the queue:
Dequeue and output a vertex
Reduce In-Degree of all vertices adjacent to it by |
Enqueue any of these vertices whose In-Degree became zero

If all vertices are output then success, otherwise there is
a cycle.

Pseudocode

Initialize D // Mapping of vertex to its in-degree
Queue Q := [Vertices with in-degree 0]
while notEmpty (Q) do
x := Dequeue (Q)
Output (x)
v := A[x]; // y gets a linked list of adjacent vertices
while y # null do
D[ly.value] := Dly.value] - 1;
if D[y.value] = 0 then Enqueue(Q,y.value);
Yy = y.next;
endwhile

endwhile

18

Topological Sort with Queue

Queue (before):
Queue (after): 1, 6

Answer:

19

Topological Sort with Queue

20

Queue (before): 1,6
Queue (after): 6, 2

Answer: |

Topological Sort with Queue

Queue (before): 6,2
Queue (after): 2

Answer: |, 6

21

Topological Sort with Queue

Queue (before): 2
Queue (after): 3

Answer: |, 6,2

22

Topological Sort with Queue

23

Queue (before): 3
Queue (after): 4

Answer: |, 6,2, 3

Topological Sort with Queue

24

Queue (before): 4
Queue (after): 5

Answer: |, 6,2, 3,4

Topological Sort with Queue

25

Queue (before): 5
Queue (after):

Answer: |,6,2,3,4,5

Topological Sort Fails (cycle)

Queue (before):
Queue (after): |

O}

Answer:

26

Topological Sort Fails (cycle)

Queue (before): |
Queue (after): 2

@
o B——0@)

@ IC/ A\
“ p ;@

Answer: |

27

Topological Sort Fails (cycle)

Queue (before): 2
Queue (after):

Answer: |, 2

28

Topological Sort Runtime?

Initialize D // Mapping of vertex to its in-degree
Queue Q := [Vertices with in-degree 0]
while notEmpty (Q) do
x := Dequeue (Q)
Output (x)
y := A[x]; // v gets a linked list of adjacent vertices
while y # null do
D[ly.value] := Dly.value] - 1;
if D[y.value] = 0 then Enqueue(Q,y.value);
y = y.next;
endwhile

endwhile

29

Topological Sort Analysis

» Initialize In-Degree map: O(|V| + |E|)
» Initialize Queue with In-Degree 0 vertices: O(|V|)

» Dequeue and output vertex:

|V| vertices, each takes only O(1) to dequeue and output: O]
\),

» Reduce In-Degree of all vertices adjacent to a vertex and
Enqueue any In-Degree 0 vertices:
O(|E|)
» Runtime = O(|V| + |E|) Linear!

30

Minimum Spanning Tree

» tree:a connected, directed acyclic graph

» spanning tree:a subgraph of a graph, which meets the
constraints to be a tree (connected, acyclic) and connects
every vertex of the original graph

» minimum spanning tree: a spanning tree with weight

less than or equal to any other spanning tree for the given
graph

31

Minimum Spanning Tree: Applications

» Consider a cable TV company laying cable to a new
neighborhood
Can only bury the cable only along certain paths
Some of paths may be more expensive (i.e. longer, harder to install)

A spanning tree for that graph would be a subset of those paths that has
no cycles but still connects to every house.

» Similar situations
Installing electrical wiring in a house
Installing computer networks between cities

Building roads between neighborhoods

32

Spanning Tree Problem

» Input:An undirected graph G = (V, E). G is connected.

» Output: T subset of E such that
(V, T) is a connected graph
(V, T) has no cycles

33

Spanning Tree Psuedocode

spanningTree():
bick random vertex v.
T:=1{
spanningTree(v,T)
return T.

spanningTree(v,T):
mark v as visited.
for each neighbor v. of v where there is an edge from v:
if v; is not visited
add edge (v,v) to I.
spanningTree(v,T)
return .

34

Example of Depth First Search

ST(1)

35

Example Step 2

{1,2}

36

ST(1)
ST(2)

Example Step 3

{1,2}{2,7}

37

ST(1)
ST(2)
ST(7)

Example Step 4

{1,2}{2,7} {7,5}

38

Example Step 5

{1,2}{2,7} {7,5} {5,4}

39

Example Step 6

{1,2}{2,7} {7,5} {5,4} {4,3}

40

Example Step 7

{1,2}{2,7} {7,5} {5,4} {4,3}

41

Example Step 8

{1,2}{2,7} {7,5} {5,4} {4,3}

42

Example Step 9

{1,2}{2,7} {7,5} {5,4} {4,3}

43

Example Step 10

{1,2}{2,7} {7,5} {5,4} {4,3}

44

Example Step 11

{1,2} {2,7} {7,5} {5,4} {4,3} {5,6}

45

Example Step 12

{1,2} {2,7} {7,5} {5,4} {4,3} {5,6}

46

Example Step 13

{1,2} {2,7} {7,5} {5,4} {4,3} {5,6}

47

Example Step 14

{1,2} {2,7} {7,5} {5,4} {4,3} {5,6}

48

Example Step 15

{1,2} {2,7} {7,5} {5,4} {4,3} {5,6}

49

Example Step 16

ST(1)

{1,2} {2,7} {7,5} {5,4} {4,3} {5,6}

50

Minimum Spanning Tree Problem

» Input: Undirected Graph G = (V, E) and a cost function C
from E to non-negative real numbers. C(e) is the cost of

edge e.

» Output: A spanning tree T with minimum total cost. That
is: T that minimizes

C(T) = E C(e)

51

Observations About Spanning Trees

» For any spanning tree T, inserting an edge e, notin T
creates a cycle

» But removing any edge e, from the cycle gives back a
spanning tree

If e, has a lower cost than e_,, we have progressed!

52

Find the MST

53

Two Diiferent Approaches

Looks familiar! Completely different!

54

Prim’s Algorithm

» ldea: Grow a tree by adding an edge from the “known”
vertices to the “unknown” vertices. Pick the edge with
the smallest weight.

—
(==

95

Prim’s Algorithm

» Starting from empty T, choose a vertex at random and
initialize V = {A}, T ={}

10 5

56

Prim’s Algorithm

» Choose vertex u not in V such that edge weight from u to
a vertex in V is minimal

10 5

57

Prim’s Algorithm
» Repeat until all vertices have been chosen

A
10 5

58

Prim’s Algorithm

59

Prim’s Algorithm

60

Prim’s Algorithm

61

Prim’s Algorithm

62

Prim’s Algorithm

63

Prim’s Algorithm Analysis

» How is it different from Djikstra's algorithm?

» If the step that removes unknown vertex with minimum
distance is done with binary heap, the running time is:

O(|E[log [V])

64

Kruskal’s MST Algorithm

» Idea: Grow a forest out of edges that do not create a
cycle. Pick an edge with the smallest weight.

G=(V,E)

__

-

—
— /

65

Example of Kruskal 1

{7,4} {2,1} {7,5} {5,6} {5,4} {1,6} {2,7} {2,3} {3,4} {1,5}
o 1 1 2 2 3 3 3 3 4

66

Example of Kruskal 2

41 {2,1}{7,5} {5,6} {5,4} {1,6} {2,7} {2,3} {3,4} {1,5}
1 1 2 2 3 3 3 3 4

67

Example of Kruskal 2

\(g{&»&ﬁﬁ} {5,6} {5,4} {1,6} {2,7}{2,3} {3,4} {1,5}
1 1 2 2 3 3 3 3 4

68

Example of Kruskal 3

\(((,:i{ 1} {wﬁ} {5,4;{1,6}{2,7} {2,3} {3,4} {15}
1 1 2 2 3 3 3 3 4

69

Example of Kruskal 4

\(g{{%@?ﬁ%w {1,6}{2,7} 2,3} {3.4} {1,5)
1 1 2 2 3 3 3 3 4

70

Example of Kruskal 5

WW@% 6}{2,7} {2,3} {3.4} {1,5}
1 1 2 2 3 3 3 3 4

71

Example of Kruskal 6

WW@W?} (2,3} {3.4} {1,5}
1 1 2 2 3 3 3 3 4

72

Example of Kruskal 7

WW@W&B} (3,4} {1,5)
1 1 2 2 3 3 3 3 4

73

Example of Kruskal 7

\(&W@WW% {1,5)
1 1 2 2 3 3 3 3 4

74

Example of Kruskal 8,9

1 1 2 2 3 3 3 3

75

Kruskal's Algorithm Implementation

Kruskals():
sort edges in increasing order of length (e, e,, €, ..., €,).

T:={}.

fori=1tom
if e, does not add a cycle:
add e; to 1.

return 1.

> H0\|N7can we determine that adding e, to T won't add a
cycle!

76

