CSE 373 Data Structures and Algorithms

Lecture 23: Graphs V

Topological Sort

Example: $142 \rightarrow 143 \rightarrow 331$

 \rightarrow 351 \rightarrow 311 \rightarrow 332 \rightarrow 312

 \rightarrow 421 \rightarrow 401

In order to take a course, you must take <u>all</u> of its prerequisites first

Topological Sort

In G = (V, E), find total ordering of vertices such that for any edge (v, w), v precedes w in the ordering

Topological Sort: Good Example

Any total ordering in which all the arrows go to the right is a valid solution

Note that F can go anywhere in this list because it is not connected.

Also the solution is not unique.

Topological Sort: Bad Example

Any ordering in which an arrow goes to the left is not a valid solution

Only acyclic graphs can be topo sorted

A directed graph with a cycle cannot be topologically sorted.

Topological Sort Algorithm: Step 1

- ▶ <u>Step I</u>: Identify vertices that have no incoming edges
 - The "in-degree" of these vertices is zero

Topological Sort Algorithm: Step 1a

- Step I: Identify vertices that have no incoming edges
 - If no such vertices, graph has cycle(s)
 - ▶ Topological sort not possible Halt.

Topological Sort Algorithm: Step 1b

- ▶ <u>Step I</u>: Identify vertices that have no incoming edges
 - Select one such vertex

Topological Sort Algorithm: Step 2

Step 2: Delete this vertex of in-degree 0 and all its outgoing edges from the graph. Place it in the output.

Topological Sort Algorithm: Repeat

▶ Repeat <u>Step I</u> and <u>Step 2</u> until graph is empty

▶ Select B. Copy to sorted list. Delete B and its edges.

▶ Select C. Copy to sorted list. Delete C and its edges.

D

▶ Select D. Copy to sorted list. Delete D and its edges.

E, F

- ▶ Select E. Copy to sorted list. Delete E and its edges.
- ▶ Select F. Copy to sorted list. Delete F and its edges.

Done

Topological Sort Algorithm

- I. Store each vertex's In-Degree in an hash table D
- 2. Initialize queue with all "in-degree=0" vertices
- 3. While there are vertices remaining in the queue:
 - a) Dequeue and output a vertex
 - b) Reduce In-Degree of all vertices adjacent to it by I
 - c) Enqueue any of these vertices whose In-Degree became zero
- If all vertices are output then success, otherwise there is a cycle.

Pseudocode

```
Initialize D // Mapping of vertex to its in-degree
Queue Q := [Vertices with in-degree 0]
while notEmpty(Q) do
  x := Dequeue(Q)
  Output(x)
  y := A[x]; // y gets a linked list of adjacent vertices
  while y ≠ null do
    D[y.value] := D[y.value] - 1;
    if D[y.value] = 0 then Enqueue(Q,y.value);
    y := y.next;
  endwhile
endwhile
```

Queue (before): Queue (after): 1, 6

Answer:

Queue (before): 1, 6 Queue (after): 6, 2

Answer: I

Queue (before): 6, 2 Queue (after): 2

Answer: 1,6

Queue (before): 2 Queue (after): 3

Answer: 1, 6, 2

Queue (before): 3 Queue (after): 4

Answer: 1, 6, 2, 3

Queue (before): 4 Queue (after): 5

Answer: 1, 6, 2, 3, 4

Queue (before): 5 Queue (after):

Answer: 1, 6, 2, 3, 4, 5

Topological Sort Fails (cycle)

Queue (before): Queue (after): I

Answer:

Topological Sort Fails (cycle)

Queue (before): I Queue (after): 2

Answer: I

Topological Sort Fails (cycle)

Queue (before): 2 Queue (after):

Answer: 1, 2

Topological Sort Runtime?

```
Initialize D // Mapping of vertex to its in-degree
Queue Q := [Vertices with in-degree 0]
while notEmpty(Q) do
  x := Dequeue(Q)
  Output(x)
  y := A[x]; // y gets a linked list of adjacent vertices
  while y ≠ null do
    D[y.value] := D[y.value] - 1;
    if D[y.value] = 0 then Enqueue(Q,y.value);
    y := y.next;
  endwhile
endwhile
```

Topological Sort Analysis

- ▶ Initialize In-Degree map: O(|V| + |E|)
- ▶ Initialize Queue with In-Degree 0 vertices: ○(|V|)
- Dequeue and output vertex:
 - |V| vertices, each takes only ○(I) to dequeue and output: ○(|V|)
- Reduce In-Degree of all vertices adjacent to a vertex and Enqueue any In-Degree 0 vertices:
 - → O(|E|)
- ▶ Runtime = O(|V| + |E|) Linear!

Minimum Spanning Tree

- tree: a connected, directed acyclic graph
- > **spanning tree**: a subgraph of a graph, which meets the constraints to be a tree (connected, acyclic) and connects every vertex of the original graph
- minimum spanning tree: a spanning tree with weight less than or equal to any other spanning tree for the given graph

Minimum Spanning Tree: Applications

- Consider a cable TV company laying cable to a new neighborhood
 - Can only bury the cable only along certain paths
 - Some of paths may be more expensive (i.e. longer, harder to install)
 - A spanning tree for that graph would be a subset of those paths that has no cycles but still connects to every house.

Similar situations

- Installing electrical wiring in a house
- Installing computer networks between cities
- Building roads between neighborhoods

Spanning Tree Problem

- ▶ Input:An undirected graph G = (V, E). G is connected.
- ▶ Output: *T* subset of *E* such that
 - ▶ (*V*, *T*) is a connected graph
 - ▶ (V, T) has no cycles

Spanning Tree Psuedocode

```
spanningTree():
   pick random vertex v.
   T := \{\}
   spanningTree(v,T)
   return T.
spanningTree(v,T):
   mark v as visited.
   for each neighbor v<sub>i</sub> of v where there is an edge from v:
      if v<sub>i</sub> is not visited
          add edge (v, v_i) to T.
          spanningTree(v,,T)
   return T.
```

Example of Depth First Search

ST(1)

Example Step 2

{1,2}

ST(1) ST(2) ST(7)

{1,2} {2,7}

ST(1) ST(2) ST(7) ST(5)

{1,2} {2,7} {7,5}

{1,2} {2,7} {7,5} {5,4}

ST(1)

Minimum Spanning Tree Problem

- Input: Undirected Graph G = (V, E) and a cost function C from E to non-negative real numbers. C(e) is the cost of edge e.
- Output: A spanning tree T with minimum total cost. That is: T that minimizes

$$C(T) = \sum_{e \in T} C(e)$$

Observations About Spanning Trees

- For any spanning tree T, inserting an edge e_{new} not in T creates a cycle
- But removing any edge e_{old} from the cycle gives back a spanning tree
 - If e_{new} has a lower cost than e_{old} , we have progressed!

Find the MST

Two Different Approaches

Prim's Algorithm

Looks familiar!

Kruskals' Algorithm Completely different!

Idea: Grow a tree by adding an edge from the "known" vertices to the "unknown" vertices. Pick the edge with the smallest weight.

 \triangleright Starting from empty T, choose a vertex at random and

initialize $V = \{A\}, T = \{\}$

Choose vertex u not in V such that edge weight from u to a vertex in V is minimal (greedy!)

$$V = \{A,C\}$$
$$T = \{ (A,C) \}$$

▶ Repeat until all vertices have been chosen

$$V = \{A,C,D\}$$

 $T = \{ (A,C), (C,D) \}$

 $V = \{A,C,D,E\}$ $T = \{ (A,C), (C,D), (D,E) \}$ 10 3 В Ε 6

 $V = \{A,C,D,E,B\}$ $T = \{ (A,C), (C,D), (D,E), (E,B) \}$ 10 3 В Ε 6

 $V = \{A,C,D,E,B,F\}$ $T = \{ (A,C), (C,D), (D,E), (E,B), (B,F) \}$ 3 В 6

Final Cost: 1 + 3 + 4 + 1 + 1 + 6 = 16

Prim's Algorithm Analysis

- ▶ How is it different from Djikstra's algorithm?
- If the step that removes unknown vertex with minimum distance is done with binary heap, the running time is:
 O(|E|log |V|)

Kruskal's MST Algorithm

Idea: Grow a forest out of edges that do not create a cycle. Pick an edge with the smallest weight.

 $\{7,4\}$ $\{2,1\}$ $\{7,5\}$ $\{5,6\}$ $\{5,4\}$ $\{1,6\}$ $\{2,7\}$ $\{2,3\}$ $\{3,4\}$ $\{1,5\}$ 0 1 1 2 2 3 3 3 3 4

Kruskal's Algorithm Implementation

Kruskals():

sort edges in increasing order of length (e_1 , e_2 , e_3 , ..., e_m).

$$T := \{\}.$$

for i = 1 to mif e_i does not add a cycle: add e_i to T.

return T.

How can we determine that adding e_i to T won't add a cycle?