CSE 373

Data Structures and Algorithms

Lecture 22: Graphs IV

Dijkstra's Algorithm

- Dijkstra's algorithm: finds shortest (minimum weight) path between a particular pair of vertices in a weighted directed graph with nonnegative edge weights
- Solves the "one vertex, shortest path" problem
- Basic algorithm concept:
- For each vertex, keep track of the currently known best way to reach it (distance, previous vertex)
- Iterate until best way is found

Example Application

- Dijkstra's algorithm can be used to find the shortest route between one city and any other
, vertices represent cities
- edge weights represent driving distances between pairs of cities connected by a direct road

Dijkstra pseudocode

Dijkstra(vl, v2):
for each vertex v : // Initialization
v's distance := infinity.
v's previous := none.
$v /$'s distance $:=0$.
List := \{all vertices\}.
while List is not empty:
$v:=$ remove List vertex with minimum distance.
mark vas known.
for each unknown neighbor n of v :
dist := v's distance + edge (v, n)'s weight.
if dist is smaller than n's distance:
n's distance := dist.
n's previous := v.
reconstruct path from v2 back to vl,
following previous pointers.

Example: Initialization

Pick vertex in List with minimum distance.

Example: Update neighbors' distance

Distance(B) $=2$
Distance (D) $=1$

Example: Remove vertex with min. distance

Pick vertex in List with minimum distance, i.e., D

Example: Update neighbors

Distance(C) $=1+2=3$ Distance(E) $=1+2=3$ Distance(F) $=1+8=9$

Distance(G) $=1+4=5$

Example: Continued...

Pick vertex in List with minimum distance (B) and update neighbors

Example: Continued...

Pick vertex List with minimum distance (E) and update neighbors

Example: Continued...

Pick vertex List with minimum distance (C) and update neighbors

Distance $(F)=3+5=8$

Example: Continued...

Pick vertex List with minimum distance (G) and update neighbors

Example (end)

Pick vertex not in S with lowest cost (F) and update neighbors

Correctness

- Dijkstra's algorithm is a greedy algorithm
- Makes choices that currently seem the best
- In general, locally optimal does not always mean globally optimal (think hill-climbing), but in this case, it is.
- Correct because maintains following two properties:
- For every known vertex, recorded distance is shortest distance to that vertex from source vertex
- For every unknown vertex v, its recorded distance is shortest path distance to v from source vertex, considering only currently known vertices and v

"Cloudy" Proof: The Idea

- If the path to v is the next shortest path, the path to v ' must be at least as long (if it were shorter, it would be picked over v). Therefore, any path through v^{\prime} to v cannot be shorter!

Time Complexity: List

- The simplest implementation of the Dijkstra's algorithm stores vertices in an ordinary linked list or array
- Good if the graph is dense (lots of edges: $|\mathrm{E}| \sim \mathrm{O}\left(\left|\mathrm{V}^{2}\right|\right)$)
- Initialization (setting to infinity, unknown) $\mathrm{O}(|\mathrm{V}|)$
- While loop $\mathrm{O}(|\mathrm{V}|)$
b Find and remove min distance vertex $\mathrm{O}(|\mathrm{V}|)$
- Potentially $\mathrm{O}(|\mathrm{E}|)$ distance updates
- Update costs $\mathrm{O}(\mathrm{I})$
- Reconstruct path $\mathrm{O}(|\mathrm{E}|)$
- Total time $O\left(\left|\mathrm{~V}^{2}\right|+|E|\right)=\mathrm{O}\left(\left|\mathrm{V}^{2}\right|\right)$

Time Complexity: Priority Queue

- For sparse graphs (i.e. |E| ~ O(|V|)), Dijkstra's implemented more efficiently by priority queue
- Initialization $\mathrm{O}(|\mathrm{V}|)$ using $\mathrm{O}(|\mathrm{V}|)$ buildHeap
- While loop $\mathrm{O}(|\mathrm{V}|)$
- Find and remove min distance vertex $\mathrm{O}(\log |\mathrm{V}|)$ using deleteMin
- Potentially $\mathrm{O}(|\mathrm{E}|)$ distance updates
- Update costs $\mathrm{O}(\log |\mathrm{V}|)$ using decreaseKey
- Reconstruct path $\mathrm{O}(|\mathrm{E}|)$
- Total time $\mathrm{O}(|\mathrm{V}| \log |\mathrm{V}|+|E| \log |\mathrm{V}|)=\mathrm{O}(|\mathrm{E}| \log |\mathrm{V}|)$
- $|\mathrm{V}|=\mathrm{O}(|\mathrm{E}|)$ assuming a connected graph

Exercise

- Use Dijkstra's algorithm to determine the lowest cost path from vertex A to all of the other vertices in the graph. Keep track of previous vertices so that you can reconstruct the path later.

