
CSE 373
Data Structures and Algorithms

Lecture 22: Graphs IV

Dijkstra's Algorithm

2

  Dijkstra's algorithm: finds shortest (minimum weight)
path between a particular pair of vertices in a weighted
directed graph with nonnegative edge weights
  Solves the "one vertex, shortest path" problem

  Basic algorithm concept:
  For each vertex, keep track of the currently known best way to

reach it (distance, previous vertex)
  Iterate until best way is found

Example Application

3

  Dijkstra's algorithm can be used to find the shortest
route between one city and any other
  vertices represent cities
  edge weights represent driving distances between pairs of

cities connected by a direct road

Dijkstra pseudocode

4	

Dijkstra(v1, v2):
 for each vertex v: // Initialization
 v's distance := infinity.
 v's previous := none.
 v1's distance := 0.
 List := {all vertices}.

 while List is not empty:
 v := remove List vertex with minimum distance.
 mark v as known.
 for each unknown neighbor n of v:
 dist := v's distance + edge (v, n)'s weight.

 if dist is smaller than n's distance:
 n's distance := dist.
 n's previous := v.

 reconstruct path from v2 back to v1,
 following previous pointers.

Example: Initialization

5	

A

G F

B

E C D

4 1

2

10 3

6 4

2 2

8 5

1

0 ∞

∞ ∞

∞

Pick vertex in List with minimum distance.

∞ ∞

Distance(source) = 0 Distance (all vertices
but source) = ∞

Example: Update neighbors' distance

6

A

G F

B

E C D

4 1

2

10 3

6 4

2 2

8 5

1

0 2

∞ ∞

1

∞ ∞

Distance(B) = 2
Distance(D) = 1

Example: Remove vertex with min. distance

7

Pick vertex in List with minimum distance, i.e., D

A

G F

B

E C D

4 1

2

10 3

6 4

2 2

8 5

1

0 2

∞ ∞

1

∞ ∞

Example: Update neighbors

8

A

G F

B

E C D

4 1

2

10 3

6 4

2 2

8 5

1

0 2

3 3

1

9 5

Distance(C) = 1 + 2 = 3
Distance(E) = 1 + 2 = 3
Distance(F) = 1 + 8 = 9
Distance(G) = 1 + 4 = 5

Example: Continued...

9

A

G F

B

E C D

4 1

2

10 3

6 4

2 2

8 5

1

0 2

3 3

1

Pick vertex in List with minimum distance (B) and update neighbors

9 5

Note : distance(D) not
updated since D is
already known and
distance(E) not updated
since it is larger than
previously computed

Example: Continued...

10

A

G F

B

E C D

4 1

2

10 3

6 4

2 2

8 5

1

0 2

3 3

1

9 5
No updating

Pick vertex List with minimum distance (E) and update neighbors

Example: Continued...

11

A

G F

B

E C D

4 1

2

10 3

6 4

2 2

8 5

1

0 2

3 3

1

8 5

Pick vertex List with minimum distance (C) and update neighbors

Distance(F) = 3 + 5 = 8

Example: Continued...

12

A

G F

B

E C D

4 1

2

10 3

6 4

2 2

8 5

1

0 2

3 3

1

6 5
Distance(F) = min (8, 5+1) = 6

Previous distance

Pick vertex List with minimum distance (G) and update neighbors

Example (end)

13

A

G F

B

E C D

4 1

2

10 3

6 4

2 2

8 5

1

0 2

3 3

1

Pick vertex not in S with lowest cost (F) and update neighbors

6 5

Correctness

14

  Dijkstra’s algorithm is a greedy algorithm
  Makes choices that currently seem the best
  In general, locally optimal does not always mean globally

optimal (think hill-climbing), but in this case, it is.

  Correct because maintains following two properties:
  For every known vertex, recorded distance is shortest distance

to that vertex from source vertex
  For every unknown vertex v, its recorded distance is shortest

path distance to v from source vertex, considering only
currently known vertices and v

“Cloudy” Proof: The Idea

15	

  If the path to v is the next shortest path, the path to v' must be at least
as long (if it were shorter, it would be picked over v). Therefore, any
path through v' to v cannot be shorter!

THE KNOWN
CLOUD

v
Next shortest path from
inside the known cloud

v'

Source

Least cost node

competitor

Time Complexity: List

16

  The simplest implementation of the Dijkstra's algorithm
stores vertices in an ordinary linked list or array
  Good if the graph is dense (lots of edges: |E| ~ O(|V2|))

  Initialization (setting to infinity, unknown) O(|V|)
  While loop O(|V|)

  Find and remove min distance vertex O(|V|)
  Potentially O(|E|) distance updates

  Update costs O(1)
  Reconstruct path O(|E|)

  Total time O(|V2| + |E|) = O(|V2|)

Time Complexity: Priority Queue

17

  For sparse graphs (i.e. |E| ~ O(|V|)), Dijkstra's implemented
more efficiently by priority queue

  Initialization O(|V|) using O(|V|) buildHeap
  While loop O(|V|)

  Find and remove min distance vertex O(log |V|) using deleteMin
  Potentially O(|E|) distance updates

  Update costs O(log |V|) using decreaseKey

  Reconstruct path O(|E|)

  Total time O(|V|log|V| + |E|log|V|) = O(|E|log|V|)
  |V| = O(|E|) assuming a connected graph

Exercise

18

  Use Dijkstra's algorithm to determine the lowest cost
path from vertex A to all of the other vertices in the
graph. Keep track of previous vertices so that you can
reconstruct the path later.

A

G

F

B

E

C

D 20

10

50

40
20

80

50

20

30

20

90
H

10

10

10

