
CSE 373 
Data Structures and Algorithms 

Lecture 22: Graphs IV 



Dijkstra's Algorithm 
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  Dijkstra's algorithm: finds shortest (minimum weight) 
path between a particular pair of vertices in a weighted 
directed graph with nonnegative edge weights 
  Solves the "one vertex, shortest path" problem 

  Basic algorithm concept: 
  For each vertex, keep track of the currently known best way to 

reach it (distance, previous vertex) 
  Iterate until best way is found  



Example Application 
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  Dijkstra's algorithm can be used to find the shortest 
route between one city and any other 
  vertices represent cities 
  edge weights represent driving distances between pairs of 

cities connected by a direct road 



Dijkstra pseudocode 
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Dijkstra(v1, v2): 
    for each vertex v:                            // Initialization 
         v's distance := infinity. 
         v's previous := none. 
    v1's distance := 0. 
    List := {all vertices}. 

    while List is not empty: 
        v := remove List vertex with minimum distance. 
        mark v as known. 
        for each unknown neighbor n of v: 
             dist := v's distance + edge (v, n)'s weight. 

             if dist is smaller than n's distance: 
                 n's distance := dist. 
                 n's previous := v. 

    reconstruct path from v2 back to v1, 
    following previous pointers. 



Example: Initialization 

5	  

A 

G F 

B 

E C D 

4 1 

2 

10 3 

6 4 

2 2 

8 5 

1 

0 ∞ 

∞ ∞ 

∞ 

Pick vertex in List with minimum distance. 

∞ ∞ 

Distance(source) = 0 Distance (all vertices 
but source) = ∞ 



Example: Update neighbors' distance 
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Example: Remove vertex with min. distance 
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Example: Update neighbors 
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Distance(C) = 1 + 2 = 3 
Distance(E) = 1 + 2 = 3 
Distance(F) = 1 + 8 = 9 
Distance(G) = 1 + 4 = 5 



Example: Continued... 
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Note : distance(D) not 
updated since D is 
already known and 
distance(E) not updated 
since it is larger than 
previously computed 



Example: Continued... 
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Pick vertex List with minimum distance (E) and update neighbors 



Example: Continued... 
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Pick vertex List with minimum distance (C) and update neighbors 

Distance(F) = 3 + 5 = 8 



Example: Continued... 
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Example (end) 
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Correctness 
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  Dijkstra’s algorithm is a greedy algorithm 
  Makes choices that currently seem the best 
  In general, locally optimal does not always mean globally 

optimal (think hill-climbing), but in this case, it is. 

  Correct because maintains following two properties: 
  For every known vertex, recorded distance is shortest distance 

to that vertex from source vertex 
  For every unknown vertex v, its recorded distance is shortest 

path distance to v from source vertex, considering only 
currently known vertices and v 



“Cloudy” Proof: The Idea 
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  If the path to v is the next shortest path, the path to v' must be at least 
as long (if it were shorter, it would be picked over v). Therefore, any 
path through v' to v cannot be shorter! 
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Time Complexity: List 
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  The simplest implementation of the Dijkstra's algorithm 
stores vertices in an ordinary linked list or array 
  Good if the graph is dense (lots of edges: |E| ~ O(|V2|)) 

  Initialization (setting to infinity, unknown) O(|V|) 
  While loop O(|V|) 

  Find and remove min distance vertex O(|V|) 
  Potentially O(|E|) distance updates 

  Update costs O(1) 
  Reconstruct path O(|E|) 

  Total time O(|V2| + |E|) = O(|V2|) 



Time Complexity: Priority Queue 
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  For sparse graphs (i.e. |E| ~ O(|V|)), Dijkstra's implemented 
more efficiently by priority queue 

  Initialization O(|V|) using O(|V|) buildHeap 
  While loop O(|V|) 

  Find and remove min distance vertex O(log |V|) using deleteMin 
  Potentially O(|E|) distance updates 

  Update costs O(log |V|) using decreaseKey 

  Reconstruct path O(|E|) 

  Total time O(|V|log|V| + |E|log|V|) = O(|E|log|V|) 
  |V| = O(|E|) assuming a connected graph 



Exercise 
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  Use Dijkstra's algorithm to determine the lowest cost 
path from vertex A to all of the other vertices in the 
graph.  Keep track of previous vertices so that you can 
reconstruct the path later. 
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