
CSE 373
Data Structures and Algorithms

Lecture 21: Graphs III

Depth-first search

2

  depth-first search (DFS): finds a path between two
vertices by exploring each possible path as many steps as
possible before backtracking
  Often implemented recursively

DFS example
  All DFS paths from A to others (assumes alphabetical

edge order)
  A
  A  B
  A  B  D
  A  B  F
  A  B  F  E
  A  C
  A  C  G

  What are the paths that DFS did not find?

3

DFS pseudocode

4	

  Pseudo-code for depth-first search:
 dfs(v1, v2):
 dfs(v1, v2, {})

 dfs(v1, v2, path):
 path += v1
 mark v1 as visited.
 if v1 is v2:
 path is found.

 for each unvisited neighbor vi of v1
 where there is an edge from v1 to vi:

 if dfs(vi, v2, path) finds a path, path is found.

 path -= v1. path is not found.

VertexInfo class

5	

public class VertexInfo<V> {

 public V v;

 public boolean visited;

 public VertexInfo(V v) {

 this.v = v;

 clear();

 }

 public void clear() {

 visited = false;

 }

}

DFS observations
  Guaranteed to find a path if one exists

  Easy to retrieve exactly what the path is (to remember
the sequence of edges taken) if we find it

  optimality: Not optimal. DFS is guaranteed to find a path,
not necessarily the best/shortest path
  Example: DFS(A, E) may return

A  B  F  E

6

Another DFS example

7	

  Using DFS, find a path from BOS to LAX.

JFK	

BOS	

MIA	

ORD	

LAX	

DFW	

SFO	

The
imag
e
cann
ot be v	

2	

The
imag
e
cann
ot be v	

1	

The
imag
e
cann
ot be v	

3	

The
imag
e
cann
ot v	

4	

The
imag
e
cann
ot be v	

5	

The
imag
e
cann
ot v	

6	

Breadth-first search
  breadth-first search (BFS): finds a path between two

nodes by taking one step down all paths and then
immediately backtracking
  Often implemented by maintaining a list or queue of vertices

to visit
  BFS always returns the path with the fewest edges between the

start and the goal vertices

8

BFS example
  All BFS paths from A to others (assumes alphabetical edge

order)
  A
  A  B
  A  C
  A  E
  A  B  D
  A  B  F
  A  C  G

  What are the paths that BFS did not find?

9

BFS pseudocode

10	

  Pseudo-code for breadth-first search:
 bfs(v1, v2):
 List := {v1}
 mark v1 as visited.

 while List not empty:
 v := List.removeFirst()
 if v is v2:
 path is found.

 for each unvisited neighbor vi of v
 where there is an edge from v to vi:

 mark vi as visited
 List.addLast(vi).

 path is not found.

BFS observations
  optimality:

  In unweighted graphs, optimal. (fewest edges = best)
  In weighted graphs, not optimal.

(path with fewest edges might not have the lowest weight)

  disadvantage: Harder to reconstruct what the actual path is
once you find it
  Conceptually, BFS is exploring many possible paths in parallel, so it's

not easy to store a path array/list in progress

  observation: Any particular vertex is only part of one partial
path at a time
  We can keep track of the path by storing predecessors for each

vertex (references to the previous vertex in that path)

11

Another BFS example

12	

  Using BFS, find a path from BOS to LAX.

JFK	

BOS	

MIA	

ORD	

LAX	

DFW	

SFO	

The
imag
e
cannv	

2	

The
imag
e
cannv	

1	

The
imag
e
cann
ot be v	

3	

The
imag
e
cannv	

4	

The
imag
e
cann
ot be v	

5	

The
imag
e
cann
ot v	

6	

DFS, BFS runtime
  In terms of the number of vertices |V| and the number of

edges |E|:
  What is the expected runtime of DFS?
  What is the expected runtime of BFS?

  Answer: O(|V| + |E|)
  Each algorithm must potentially visit every node and/or

examine every edge once.

  What is the space complexity of each algorithm?
  O(|V|)

13

