CSE 373

Data Structures and Algorithms

Lecture 21: Graphs III

Depth-first search

- depth-first search (DFS): finds a path between two vertices by exploring each possible path as many steps as possible before backtracking
> Often implemented recursively

DFS example

- All DFS paths from A to others (assumes alphabetical edge order)
- A
- $A \rightarrow B$
- $A \rightarrow B \rightarrow D$
- $\mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{F}$
- $\mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{F} \rightarrow \mathrm{E}$
- $A \rightarrow C$

. $A \rightarrow C \rightarrow G$
- What are the paths that DFS did not find?

DFS pseudocode

- Pseudo-code for depth-first search: $d f(v 1, v 2)$:
$d f s(v 1, v 2,\{ \})$
$d f(v 1, v 2, p a t h):$
path += vl
mark vl as visited.
if vl is $\mathrm{v2}$:
path is found.

for each unvisited neighbor v_{i} of $v /$ where there is an edge from $v /$ to v_{i} :
if $d f s\left(v_{p}, v 2\right.$, path) finds a path, path is found.
path $-=v l$. path is not found.

VertexInfo class

```
public class VertexInfo<V> {
    public V v;
    public boolean visited;
    public VertexInfo(V v) {
        this.v = v;
        clear();
    }
    public void clear() {
        visited = false;
    }
}
```


DFS observations

- Guaranteed to find a path if one exists
- Easy to retrieve exactly what the path is (to remember the sequence of edges taken) if we find it
- optimality: Not optimal. DFS is guaranteed to find a path, not necessarily the best/shortest path
- Example: DFS(A, E) may return

$$
\mathrm{A} \rightarrow \mathrm{~B} \rightarrow \mathrm{~F} \rightarrow \mathrm{E}
$$

Another DFS example

- Using DFS, find a path from BOS to LAX.

Breadth-first search

- breadth-first search (BFS): finds a path between two nodes by taking one step down all paths and then immediately backtracking
- Often implemented by maintaining a list or queue of vertices to visit
- BFS always returns the path with the fewest edges between the start and the goal vertices

BFS example

- All BFS paths from A to others (assumes alphabetical edge order)

$$
\begin{aligned}
& A \\
& A \rightarrow B \\
& A \rightarrow C \\
& A \rightarrow E \\
& A \rightarrow B \rightarrow D \\
& A \rightarrow B \rightarrow F \\
& A \rightarrow C \rightarrow G
\end{aligned}
$$

- What are the paths that BFS did not find?

BFS pseudocode

- Pseudo-code for breadth-first search:
bfs(v1, v2):
List $:=\{v /\}$
mark vl as visited.
while List not empty:
v := List.removeFirst()
if v is $v 2$:
path is found.
for each unvisited neighbor v_{i} of v
 where there is an edge from v to v_{i} :
mark v_{i} as visited List.addLast(v_{i}).
path is not found.

BFS observations

- optimality:
- In unweighted graphs, optimal. (fewest edges = best)
- In weighted graphs, not optimal. (path with fewest edges might not have the lowest weight)
- disadvantage: Harder to reconstruct what the actual path is once you find it
- Conceptually, BFS is exploring many possible paths in parallel, so it's not easy to store a path array/list in progress
- observation:Any particular vertex is only part of one partial path at a time
- We can keep track of the path by storing predecessors for each vertex (references to the previous vertex in that path)

Another BFS example

- Using BFS, find a path from BOS to LAX.

DFS, BFS runtime

- In terms of the number of vertices $|V|$ and the number of edges $|E|$:
- What is the expected runtime of DFS?
- What is the expected runtime of BFS?
- Answer: $\mathrm{O}(|V|+|E|)$
- Each algorithm must potentially visit every node and/or examine every edge once.
- What is the space complexity of each algorithm?
- $\mathrm{O}(|\mathrm{V}|)$

