CSE 373

Data Structures and Algorithms

Lecture 20: Graphs II

Implementing a Graph

- To program a graph data structure, what information would we need to store?
- For each vertex?
- For each edge?

Implementing a Graph

- What kinds of questions would we want to be able to answer (quickly?) about a graph G?
- Where is vertex v ?
- Which vertices are adjacent to vertex v ?
- What edges touch vertex v ?
- What are the edges of G ?
- What are the vertices of G ?

- What is the degree of vertex v ?

Graph Implementation Strategies

- Edge List
- Adjacency Matrix
- Adjacency List

Edge List

- edge list: an unordered list of all edges in the graph

1	1	1	2	2	3	5	5	5	7
2	5	6	7	3	4	6	7	4	4

* This is NOT an array

Edge List: Pros and Cons

- advantages
- easy to loop/iterate over all edges
- disadvantages
- hard to tell if an edge exists from A to B
- hard to tell how many edges
a vertex touches (its degree)

1	1	1	2	2	3	5	5	5	7
2	5	6	7	3	4	6	7	4	4

Adjacency Matrix

- adjacency matrix: an $\mathrm{n} \times \mathrm{n}$ matrix where:
b the nondiagonal entry $a_{i j}$ is the number of edges joining vertex i and vertex j (or the weight of the edge joining vertex i and vertex j)
b the diagonal entry $a_{i i}$ corresponds to the number of loops (selfconnecting edges) at vertex i

Adjacency Matrix: Pros and Cons

- advantages
- fast to tell whether edge exists between any two vertices i and j (and to get its weight)
- disadvantages
- consumes a lot of memory on sparse graphs (ones with few edges)
- redundant information for undirected graphs

Adjacency Matrix Example

- How do we figure out the degree of a given vertex?
- How do we find out whether an edge exists from A to B ?
- How could we look for loops in the graph?

$\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$							
1	0	1	0	0	1	1	0
2	1	0	1	0	0	0	1
3	0	1	0	1	0	0	0
$\begin{aligned} & 4 \\ & 5 \end{aligned}$	0	0	1	0	1	0	1
$\begin{aligned} & 0 \\ & 6 \end{aligned}$	1	0	0	1	0	1	1
7	1	0	0	0	1	0	0
	0	1	0	1	1	0	0

Adjacency Lists

- adjacency list: stores edges as individual linked lists of references to each vertex's neighbors

Adjacency List: Pros and Cons

- advantages:
- new nodes can be added easily
- new nodes can be connected with existing nodes easily
, "who are my neighbors" easily answered
- disadvantages:
- determining whether an edge exists between two nodes: O(average degree)

Adjacency List Example

- How do we figure out the degree of a given vertex?
- How do we find out whether an edge exists from A to B ?
- How could we look for loops in the graph?

Runtime table

- \boldsymbol{n} vertices, \boldsymbol{m} edges no parallel edges no self-loops	Edge List	Adjacency List	Adjacency Matrix
Space	$\boldsymbol{n}+\boldsymbol{m}$	$\boldsymbol{n}+\boldsymbol{m}$	\boldsymbol{n}^{2}
Finding all adjacent vertices to \boldsymbol{v}	\boldsymbol{m}	$\operatorname{deg}(\boldsymbol{v})$	\boldsymbol{n}
Determining if \boldsymbol{v} is adjacent to \boldsymbol{w}	\boldsymbol{m}	$\operatorname{deg}(\boldsymbol{v})$	1
adding a vertex	1	1	\boldsymbol{n}^{2}
adding an edge to \boldsymbol{v}	1	\boldsymbol{m}	1
removing vertex \boldsymbol{v}	\boldsymbol{m}	$\boldsymbol{n} \boldsymbol{n}$	\boldsymbol{n}^{2}
removing an edge from \boldsymbol{v}	\boldsymbol{m}	$\operatorname{deg}(\boldsymbol{v})$	1

Practical Implementation

- Not all graphs have vertices/edges that are easily "numbered"
- How do we actually represent 'lists' or 'matrices' of vertex/ edge relationships?
- How do we quickly look up the edges and/or vertices adjacent to a given vertex?

Practical Implementation

- Adjacency list
- Each Vertex maps to a List of edges
- Vertex \rightarrow List<Edge>
- To get all edges adjacent to v_{l}, look up List<Edge> neighbors $=$ map.get $\left(v_{l}\right)$
- Adjacency map (adjacency matrix for objects)
- Each Vertex maps to a hashtable of adjacent vertices
- Vertex \rightarrow (Vertex \rightarrow Edge)
- To find out whether there's an edge from v_{1} to v_{2}, call map.get $\left(v_{1}\right)$.containsKey (v_{2})
- To get the edge from v_{1}, to v_{2}, call map.get $\left(v_{1}\right) \cdot \operatorname{get}\left(v_{2}\right)$

Implementing Graph with Adjacency List

```
public interface IGraph<V> {
    public void addVertex(V v);
```

 public void addEdge (V v1, V v2, int weight);
 public boolean hasEdge (V v1, V v2);
 public Edge<V> getEdge (V v1, V v2);
 public boolean hasPath(V v1, V v2);
 public List<V> getDFSPath(V v1, V v2);
 public String toString();
 \}

Edge class

```
public class Edge<V> {
    public V from, to;
    public int weight;
    public Edge(V from, V to, int weight) {
            if (from == null || to == null) {
                throw new IllegalArgumentException("null");
            }
            this.from = from;
            this.to = to;
            this.weight = weight;
    }
    public String toString() {
            return "<" + from + ", " + to + ", " + weight + ">";
    }
}
```

