
CSE 373
Data Structures and Algorithms

Lecture 20: Graphs II

Implementing a Graph
  To program a graph data structure, what information

would we need to store?
  For each vertex?
  For each edge?

2

1
2

3

4

5
6

7

Implementing a Graph
  What kinds of questions

would we want to be able to
answer (quickly?) about a
graph G?
  Where is vertex v?
  Which vertices are adjacent to

vertex v?
  What edges touch vertex v?
  What are the edges of G?
  What are the vertices of G?
  What is the degree of vertex v?

3

1
2

3

4

5
6

7

Graph Implementation Strategies
  Edge List
  Adjacency Matrix
  Adjacency List

4

Edge List

5

  edge list: an unordered list of all edges in the graph

* This is NOT an array

1

2

1

5

1

6

2

7

2

3

3

4

5

7

5

6

5

4

7

4

1
2

3

4

5
6

7

Edge List: Pros and Cons
  advantages

  easy to loop/iterate over all edges

  disadvantages
  hard to tell if an edge

exists from A to B
  hard to tell how many edges

a vertex touches (its degree)

6

1

2

1

5

1

6

2

7

2

3

3

4

5

7

5

6

5

4

7

4

Adjacency Matrix

7

  adjacency matrix: an n × n matrix where:
  the nondiagonal entry aij is the number of edges joining vertex i

and vertex j (or the weight of the edge joining vertex i and
vertex j)

  the diagonal entry aii corresponds to the number of loops (self-
connecting edges) at vertex i

Adjacency Matrix: Pros and Cons

8

  advantages
  fast to tell whether edge exists between any two vertices i and

j (and to get its weight)

  disadvantages
  consumes a lot of memory on sparse graphs (ones with few

edges)
  redundant information for undirected graphs

Adjacency Matrix Example
  How do we figure out the degree of a given vertex?
  How do we find out whether an edge exists from A to B?
  How could we look for loops in the graph?

9

1
2

3

4

5
6

7

0
1
0
0
1
1
0

1
2
3
4
5
6
7

1
0
1
0
0
0
1

0
1
0
1
0
0
0

0
0
1
0
1
0
1

1
0
0
1
0
1
1

1
0
0
0
1
0
0

0
1
0
1
1
0
0

1 2 3 4 5 6 7

Adjacency Lists

10

  adjacency list: stores edges as individual linked lists of
references to each vertex's neighbors

Adjacency List: Pros and Cons

11

  advantages:
  new nodes can be added easily
  new nodes can be connected with existing nodes easily
  "who are my neighbors" easily answered

  disadvantages:
  determining whether an edge exists between two nodes:

O(average degree)

Adjacency List Example

12

  How do we figure out the degree of a given vertex?
  How do we find out whether an edge exists from A to B?
  How could we look for loops in the graph?

1
2

3

4

5
6

7

1
2
3
4
5
6
7

2 5 6
3 1 7
2 4
3 7 5
6 1 7 4
1 5
4 5 2

Runtime table

13	

  n vertices, m edges
  no parallel edges
  no self-loops

Edge
List

Adjacency
List

Adjacency
Matrix

Space

Finding all adjacent
vertices to v

Determining if v is
adjacent to w

adding a vertex

adding an edge

removing vertex v

removing an edge

  n vertices, m edges
  no parallel edges
  no self-loops

Edge
List

Adjacency
List

Adjacency
Matrix

Space n + m n + m n2

Finding all adjacent
vertices to v m deg(v) n

Determining if v is
adjacent to w m deg(v) 1

adding a vertex 1 1 n2

adding an edge to v 1 1 1

removing vertex v m n? n2

removing an edge from v m deg(v) 1

Practical Implementation
  Not all graphs have vertices/edges that are easily

"numbered”
  How do we actually represent 'lists' or 'matrices' of vertex/

edge relationships?
  How do we quickly look up the edges and/or vertices adjacent

to a given vertex?

14

ORD PVD

MIA
DFW

SFO

LAX

LGA

HNL

849

80
2

1387 17
43

1843

1099
1120

1233

337 2555

142

Practical Implementation
  Adjacency list

  Each Vertex maps to a List of edges
  Vertex  List<Edge>
  To get all edges adjacent to v1, look up

List<Edge> neighbors = map.get(v1)

  Adjacency map (adjacency matrix for objects)
  Each Vertex maps to a hashtable of adjacent vertices
  Vertex  (Vertex  Edge)
  To find out whether there's an edge from v1 to v2, call

map.get(v1).containsKey(v2)
  To get the edge from v1 to v2, call map.get(v1).get(v2)

15

Implementing Graph with Adjacency List

16	

public interface IGraph<V> {
 public void addVertex(V v);

 public void addEdge(V v1, V v2, int weight);

 public boolean hasEdge(V v1, V v2);

 public Edge<V> getEdge(V v1, V v2);

 public boolean hasPath(V v1, V v2);

 public List<V> getDFSPath(V v1, V v2);

 public String toString();
}

Edge class

17	

public class Edge<V> {
 public V from, to;
 public int weight;

 public Edge(V from, V to, int weight) {
 if (from == null || to == null) {
 throw new IllegalArgumentException("null");
 }
 this.from = from;
 this.to = to;
 this.weight = weight;
 }

 public String toString() {
 return "<" + from + ", " + to + ", " + weight + ">";
 }
}

