CSE 373
Data Structures and Algorithms

Lecture 20: Graphs II

Implementing a Graph

» To program a graph data structure, what information
would we need to store!

For each vertex!?

For each edge!?

Implementing a Graph

» What kinds of questions
would we want to be able to
answer (quickly?) about a
graph G?

Where is vertex v?

Which vertices are adjacent to
vertex v?

What edges touch vertex v!
What are the edges of G?
What are the vertices of G?
What is the degree of vertex v!

Graph Implementation Strategies

» Edge List
» Adjacency Matrix
» Adjacency List

Edge List

» edge list: an unordered list of all edges in the graph

*This is NOT an array

Edge List: Pros and Cons

» advantages

easy to loop/iterate over all edges

» disadvantages

hard to tell if an edge
exists from A to B

hard to tell how many edges
a vertex touches (its degree)

Adjacency Matrix

» adjacency matrix:an n X n matrix where:

the nondiagonal entry g; is the number of edges joining vertex i
and vertex j (or the weight of the edge joining vertex i and
vertex j)

the diagonal entry a; corresponds to the number of loops (self-
connecting edges) at vertex i

/ '"\.

N~ 2 1 00 1 0
' \'L_’ \/\ / \
) 101010

Y
:'/Q\L_/'tj\ : 0O 1 0 1 0 O
2/ s) 0010 1 1
TS 110100

-,
D \0 0 0 1 0 0/

Adjacency Matrix: Pros and Cons

» advantages

fast to tell whether edge exists between any two vertices i and
j (and to get its weight)

» disadvantages
consumes a lot of memory on sparse graphs (ones with few
edges)
redundant information for undirected graphs

Adjacency Matrix Example

» How do we figure out the degree of a given vertex!?
» How do we find out whether an edge exists from A to B?

» How could we look for loops in the graph?

2
1 2 345 67 1
17o[1]oJol1[1]0 /\3
211/0(1]|0|l0|0]1
STol1]ol[1]0olo0]o0 /
‘5‘0010101 \4
s [1ofol1ol1]1
1lololo|1]0]0 \
70101100 6 5/

Adjacency Lists

» adjacency list: stores edges as individual linked lists of
references to each vertex's neighbors

—» 5(8) —» 2(2)

10

Adjacency List: Pros and Cons

» advantages:
new nodes can be added easily
new nodes can be connected with existing nodes easily
"who are my neighbors" easily answered

» disadvantages:

determining whether an edge exists between two nodes:
O(average degree)

1

4

12 —» 3(1) —L

4 (10) —» 3 (3) —L

0(4) —» 55 —_
(4)

42 —» 6

6((6) —_

g

o o0 A W NN = O

SM —

11

Adjacency List Example

» How do we figure out the degree of a given vertex!?
» How do we find out whether an edge exists from A to B?

» How could we look for loops in the graph?

2
1
1 2 {51 16 — \3
g 3 1 7 /
4 > 2 > 4 7
5 "3 L7 9
6 "6 "1 L7 "4 4
! - = \
4 5 P o /
S

12

Runtime table

= n vertices, m edges

= no parallel edges Edge Adjacency Adjacency
= NO self—loops List List Matrix
Space n+m n+m n?
Finding all adjacent
vertices to v m deg(v) n
Determining if v is
adjacent to w m deg(v) 1
adding a vertex 1 1 n?
adding an edge to v 1 1 1
removing vertex v m n? n2
removing an edge from v m deg(v) 1

13

Practical Implementation

» Not all graphs have vertices/edges that are easily
"numbered”

How do we actually represent 'lists' or 'matrices' of vertex/
edge relationships?

How do we quickly look up the edges and/or vertices adjacent
to a given vertex!

14

Practical Implementation

» Adjacency list
Each Vertex maps to a List of edges
Vertex —> List<Edge>

To get all edges adjacent to v/, look up
List<Edge> neighbors = map.get(v,)

» Adjacency map (adjacency matrix for objects)
Each Vertex maps to a hashtable of adjacent vertices

Vertex = (Vertex - Edge)

To find out whether there's an edge from v, to v,, call
map.get(v,).containsKey(v,)

To get the edge from v, to v,, call map.get(v,).get(v,)

15

Implementing Graph with Adjacency List

public interface IGraph<V> {
public void addVertex(V v);

public void addEdge(V v1l, V v2, int weight);
public boolean hasEdge(V vl1l, V v2);

public Edge<V> getEdge(V vl1, V v2);

public boolean hasPath(V vl, V v2);

public List<V> getDFSPath(V vl, V v2);

public String toString();

16

Edge class

public class Edge<V> {
public V from, to;
public int weight;

public Edge (V from, V to, int weight) {
if (from == null || to == null) {

throw new IllegalArgumentException ("null");

}

this.from = from;
this.to = to;
this.weight = weight;

public String toString() {
return "<" 4+ from + u, " 4+ to + vv, "

17

+ weight + ">";

