
CSE 373
Data Structures and Algorithms

Lecture 18: Hashing III

Runtime of hashing
  the load factor λ is the fraction of the table that is full

  λ = 0 (empty) λ = 0.5 (half full) λ = 1 (full table)

  Linear probing:
  If hash function is fair and λ < 0.5 - 0.6, then hashtable

operations are all O(1)

  Double hashing:
  If hash function is fair and λ < 0.9 - 0.95, then hashtable

operations are all O(1)

2

Rehashing
  rehash: increasing the size of a hash table's array, and re-

storing all of the items into the array using the hash
function
  Can we just copy the old contents to the larger array?

  When should we rehash?
  when table is half full
  when an insertion fails
  when load reaches a certain level (best option)

3

Rehashing (cont’d)
  What is the cost (Big-Oh) of rehashing?

  O(n). Isn’t that bad?

  How much bigger should a hash table get when it grows?
  What is a good hash table array size?

  Find next prime that is at least twice the current table’s size

4

Hashing practice problem

5

  Draw a diagram of the state of a hash table of size 10,
initially empty, after adding the following elements.
  h(x) = x mod 10 as the hash function.
  Assume that the hash table uses linear probing.
  Assume that rehashing occurs at the start of an add where the load

factor is 0.5.

7, 84, 31, 57, 44, 19, 27, 14, and 64

  Repeat the problem above using quadratic probing.

How do we hash different objects in Java?

6

  Every object that will be hashed should define a reasonably
unique hash code

  public int hashCode() in class Object

  Hash tables will index elements in array by hashCode()
value

  If using separate chaining, we just have to check that one index to
see if it's there: O(1)*

"Tom Katz".hashCode() % 10 == 6

"Sarah Jones".hashCode() % 10 == 8

"Tony Balognie".hashCode() % 10 == 9

* Assuming chains are not too long

Error: not overriding equals
public class Point {

 private int x, y;

 public Point(int x, int y) {

 this.x = x;

 this.y = y;

 }

 // No equals!

}

  The following code prints false!
 ArrayList<Point> p = new ArrayList<Point>();

 p.add(new Point(7, 11));

 System.out.println(p.contains(new Point(7, 11)));

7

Membership testing in ArrayList in Java

  When searching for a given object (contains):
  Java compares the given object with objects in the ArrayList

using the object’s equals method

  Override the Employee's equals method.

8

Error: overriding equals but not hashCode
public class Point {
 private int x, y;

 public Point(int x, int y) {
 this.x = x;

 this.y = y;
 }

 public boolean equals(Object o) {
 if (o == this) { return true; }

 if (!(o instanceof Point)) { return false; }
 Point p = (Point)o;

 return p.x == this.x && p.y == this.y;
 }

 // No hashCode!
}

  The following code prints false!
 HashSet<Point> p = new HashSet<Point>();

 p.add(new Point(7, 11));
 System.out.println(p.contains(new Point(7, 11)));

9

Membership testing in HashSet in Java

  When searching for a given object (contains):
  The set computes the hashCode for the given object
  It looks in the chain at that index of the HashSet's internal

array
  Java compares the given object with objects in the HashSet

using the object’s equals method

  General contract: if equals is overridden, hashCode
should be overridden also; equal objects must have equal
hash codes

10

Overriding hashCode

11

  Conditions for overriding hashCode:
  Return same value for object whose state hasn’t changed since last call
  If x.equals(y), then x.hashCode() == y.hashCode()
  If !x.equals(y), it is not necessary that x.hashCode() !=
y.hashCode()
  Why not?

  Advantages of overriding hashCode
  Your objects will store themselves correctly in a hash table
  Distributing the hash codes will keep the hash balanced: no one bucket will

contain too much data compared to others

 public int hashCode() {
 int result = 37 * x;
 result = result + y;
 return result;
 }

Overriding hashCode, cont’d.

12

  Things to do in a good hashCode implementation
  Make sure the hash code is same for equal objects
  Try to ensure that the hash code will be different for different objects
  Try to ensure that the hash code depends on every piece of state that is

used in equals
  What if you don’t?

  Strings prior to Java 1.2 only considered the first 16 letters. What is wrong with this?

  Preferably, weight the pieces so that different objects won’t happen to
add up to the same hash code

  Override the Employee's hashCode method.

The Map ADT
  map: Holds a set of unique keys and a collection of values,

where each key is associated with one value
  a.k.a. "dictionary", "associative array", "hash"

  basic map operations:
  put(key, value): Adds a

mapping from a key to
a value.

  get(key): Retrieves the
value mapped to the key.

  remove(key): Removes
the given key and its
mapped value.

13

myMap.get("Juliet") returns "Capulet"

Maps in computer science

14

  Compilers
  Symbol table

  Operating Systems
  File systems (file name  location)

  Real world Examples
  Names to phone numbers
  URLs to IP addresses
  Student ID to student information

Using Maps
  In Java, maps are represented by the Map interface in
java.util

  Map is implemented by the HashMap and TreeMap
classes
  HashMap: implemented with hash table; uses separate chaining

extremely fast: O(1) ; keys are stored in unpredictable order
  TreeMap: implemented with balanced binary search tree;

very fast: O(log N) ; keys are stored in sorted order
  A map requires 2 type parameters: one for keys, one for values.

 // maps from String keys to Integer values
 Map<String, Integer> votes = new HashMap<String, Integer>();

15

Map methods
put(key, value) adds a mapping from the given key to the given value;

if the key already exists, replaces its value with the given one

get(key) returns the value mapped to the given key (null if not
found)

containsKey(key) returns true if the map contains a mapping for the given
key

remove(key) removes any existing mapping for the given key

clear() removes all key/value pairs from the map

size() returns the number of key/value pairs in the map

isEmpty() returns true if the map's size is 0

toString() returns a string such as "{a=90, d=60, c=70}"

keySet() returns a set of all keys in the map

values() returns a collection of all values in the map

putAll(map) adds all key/value pairs from the given map to this map

equals(map) returns true if given map has the same mappings as this
one

keySet and values

17

  keySet() returns a Set of all keys in the map
  Can loop over the keys in a foreach loop
  Can get each key's associated value by calling get on the map

Map<String, Integer> ages = new TreeMap<String, Integer>();
ages.put("Meghan", 29);
ages.put("Kona", 3); // ages.keySet() returns Set<String>
ages.put("Daisy", 1);
for (String name : ages.keySet()) { // Daisy -> 1
 int age = ages.get(name); // Kona -> 3
 System.out.println(name + " -> " + age); // Meghan -> 29
}

  values() returns a collection of values in the map
  Can loop over the values in a foreach loop
  No easy way to get from a value to its associated key(s)

Implementing Map with Hash Table

18

  Each map entry adds a new key  value pair to the map
  Entry contains:

  key element of given key type (null is a valid key value)
  value element of given value type
  additional information needed to maintain hash table

  Organized for super quick access to keys
  The keys are what we will be hashing on

Implementing Map with Hash Table, cont.

19

public interface Map<K, V> {

 public boolean containsKey(K key);

 public V get(K key);

 public void print();

 public void put(K key, V value);

 public V remove(K key);

 public int size();

}

HashMapEntry

20

public class HashMapEntry<K, V> {

 public K key;

 public V value;

 public HashMapEntry<K, V> next;

 public HashMapEntry(K key, V value) {

 this(key, value, null);

 }

 public HashMapEntry(K key, V value, HashMapEntry<K, V> next) {

 this.key = key;

 this.value = value;

 this.next = next;

 }

}

Map implementation: put

21

  Similar to our Set implementation's add method
  Figure out where key would be in the map
  If it is already there replace the existing value with the new

value
  If the key is not in the map, insert the key, value pair into the

map as a new map entry

Map implementation: put

22

public void put(K key, V value) {

 int keyBucket = hash(key);

 HashMapEntry<K, V> temp = table[keyBucket];

 while (temp != null) {

 if ((temp.key == null && key == null)

 || (temp.key != null && temp.key.equals(key))) {

 temp.value = value;

 return;

 }

 temp = temp.next;

 }

 table[keyBucket] = new HashMapEntry<K, V>(key, value, table[keyBucket]);

 size++;

}

