
CSE 373 
Data Structures and Algorithms 

Lecture 17: Hashing II 



Hash versus tree 

2 

  Which is better, a hash set or a tree set? 

Hash Tree 



Implementing Set ADT (Revisited) 

3 

Insert Remove Search 

Unsorted 
array 

O(1) O(n) O(n) 

Sorted array O(log n + n) O(log n + n) O(log n) 

Linked list O(1) O(n) O(n) 

BST (if 
balanced) 

O(log n) O(log n) O(log n) 

Hash table O(1) O(1) O(1) 



Probing hash tables 

4 

  Alternative strategy for collision resolution: try alternative 
cells until empty cell found 
  cells h0(x), h1(x), h2(x), ... tried in succession, where: 

  hi(x) = (hash(x) + f(i)) % TableSize 

  f is collision resolution strategy 
  Because all data goes in table, bigger table needed 



Linear probing 

5 

  linear probing: resolve collisions in slot i by putting colliding 
element into next available slot (i+1, i+2, ...) 

  Pseudocode for insert: 
  first probe = h(value) 
  while (table[probe] occupied) 
    probe = (probe + 1) % TableSize 
  table[probe] = value 

  add 41, 34, 7, 18, then 21, then 57 

  lookup/search algorithm modified - have to loop until we find 
the element or an empty slot 
  What happens when the table gets mostly full? 

0 

1 41 

2 

3 

4 34 

5 

6 

7 7 

8 18 

9 



Linear probing 

6 

  f(i) = i 
  Probe sequence: 

   0th probe =  h(x) mod TableSize 
 1th probe = (h(x) + 1) mod TableSize 
 2th probe = (h(x) + 2) mod TableSize  
 . . . 
 ith probe = (h(x) + i) mod TableSize  



Deletion in Linear Probing 

7 

  To delete 18, first search for 18 

  18 found in bucket 8 

  What happens if we set bucket 8 to null? 
  What will happen when we search for 57? 

0 

1 41 

2 21 

3 

4 34 

5 

6 

7 7 

8 18 

9 57 



Deletion in Linear Probing (2) 

8 

  Instead of setting bucket 8 to null, place a special 
marker there 

  When lookup encounters marker, it ignores it and 
continues search 
  What should insert do if it encounters marker? 

  Too many markers degrades performance – rehash 
if there are too many 

0 

1 41 

2 21 

3 

4 34 

5 

6 

7 7 

8 X 

9 57 



0 49 

1 58 

2 9 

3 

4 

5 

6 

7 

8 18 

9 89 

Primary clustering problem 

9 

  clustering: nodes being placed close together by 
probing, which degrades hash table's performance 
  add 89, 18, 49, 58, 9 

  now searching for the value 28 will have to check half 
the hash table!  no longer constant time... 



Linear probing – clustering  

10 

no	  collision	  

no	  collision	  
collision	  in	  small	  cluster	  

collision	  in	  large	  cluster	  



Alternative probing strategy 

11 

  Primary clustering occurs with linear probing because the 
same linear pattern: 
  if a slot is inside a cluster, then the next slot must either: 

  also be in that cluster, or 
  expand the cluster 

  Instead of searching forward in a linear fashion, consider 
searching forward using a quadratic function 



0 49 

1 

2 58 

3 9 

4 

5 

6 

7 

8 18 

9 89 

Quadratic probing 

12 

  quadratic probing: resolving collisions on slot i by 
putting the colliding element into slot i+1, i+4, i+9, 
i+16, ... 
  add 89, 18, 49, 58, 9 

  49 collides (89 is already there), so we search ahead by +1 
to empty slot 0 

  58 collides (18 is already there), so we search ahead by +1 
to occupied slot 9, then +4 to empty slot 2 

  9 collides (89 is already there), so we search ahead by +1 to 
occupied slot 0, then +4 to empty slot 3 

  What is the lookup algorithm? 



Quadratic probing in action 

13 



Quadratic probing 

14 

  f(i) = i2 

  Probe sequence: 
   0th probe =  h(x) mod TableSize 

 1th probe = (h(x) + 1) mod TableSize 
 2th probe = (h(x) + 4) mod TableSize  
 3th probe = (h(x) + 9) mod TableSize 
 . . . 
 ith probe = (h(x) + i2) mod TableSize  



Quadratic probing benefit 

15 

  If one of h + i2 falls into a cluster, this does not imply the 
next one will 

  For example, suppose an element was to be inserted in 
bucket 23 in a hash table with 31 buckets 
  The sequence in which the buckets would be checked is: 

23, 24, 27, 1, 8, 17, 28, 10, 25, 11, 30, 20, 12, 6, 2, 0 



Quadratic probing benefit 

16 

  Even if two buckets are initially close, the sequence in 
which subsequent buckets are checked varies greatly 
  Again, with TableSize = 31, compare the first 16 buckets which 

are checked starting with elements 22 and 23: 

  22  22, 23, 26,  0,   7, 16, 27,   9, 24, 10, 29, 19, 11,   5,   1, 30 

    23  23, 24, 27,  1,   8, 17, 28, 10, 25, 11, 30, 20, 12,   6,   2,   0 

  Quadratic probing solves the problem of primary 
clustering 



Quadratic probing drawbacks 

17 

  Suppose we have 8 buckets: 
   12 % 8 = 1, 22  % 8 = 4, 32 % 8 = 1 
  In this case, we are checking bucket h(x) + 1 twice having 

checked only one other bucket 

  No guarantee that 
      (h(x) + i2) % TableSize 
 will cycle through 0, 1, ..., TableSize – 1 



Quadratic probing 

18 

  Solution: 
  require that TableSize be prime 
  (h(x) + i2) % TableSize   for i = 0, ..., (TableSize – 1)/2 will cycle 

through (TableSize + 1)/2 values before repeating 

  Example with TableSize = 11: 
0, 1, 4, 9, 16 ≡ 5, 25 ≡ 3, 36 ≡ 3  

  With TableSize = 13: 
0, 1, 4, 9, 16 ≡ 3, 25 ≡ 12, 36 ≡ 10, 49 ≡ 10  

  With TableSize = 17: 
0, 1, 4, 9, 16, 25 ≡ 8, 36 ≡ 2, 49 ≡ 15, 64 ≡ 13, 81 ≡ 13 

Note: the symbol ≡ means "% TableSize" 



Hashing practice problem 

19 

  Draw a diagram of the state of a hash table of size 10, 
initially empty, after adding the following elements. 
  h(x) = x mod 10 as the hash function. 
  Assume that the hash table uses linear probing. 

7, 84, 31, 57, 44, 19, 27, 14, and 64 

  Repeat the problem above using quadratic probing. 



Double hashing 

20 

  double hashing: resolve collisions on slot i by applying a 
second hash function 

  f(i) = i * g(x)  
where g is a second hash function 
  limitations on what g can evaluate to?  
  recommended: g(x) = R – (x % R), where R prime smaller than 

TableSize 

  Psuedocode for double hashing: 
if (table is full) error 
probe = h(value) 
offset = g(value) 
while (table[probe] occupied) 
   probe = (probe + offset) % TableSize 
table[probe] = value 



Double Hashing Example 

21 

0 
1 
2 
3 
4 
5 
6 41 

41 

0 
1 
2 
3 
4 
5 
6 

16 

41 

16 

0 
1 
2 
3 
4 
5 
6 

16 

40 
41 

40 

0 
1 
2 
3 
4 
5 
6 

47 
16 

40 
41 

47 

0 
1 
2 
3 
4 
5 
6 

47 
16 
10 

40 
41 

10 

0 
1 
2 
3 
4 
5 
6 

47 
16 
10 
55 
40 
41 

55 

h(x) = x % 7 and g(x) = 5 – (x % 5) 

Probes  1                   1                 1                  2                 1                 2 



Double hashing 

22 

  f(i) = i * g(x) 

  Probe sequence: 
   0th probe =  h(x) % TableSize 
   1th probe = (h(x) + g(x)) % TableSize 
   2th probe = (h(x) + 2*g(x)) % TableSize  
   3th probe = (h(x) + 3*g(x)) % TableSize 
    . . . 
    ith probe = (h(x) + i*g(x)) % TableSize  


