
CSE 373
Data Structures and Algorithms

Lecture 17: Hashing II

Hash versus tree

2

  Which is better, a hash set or a tree set?

Hash Tree

Implementing Set ADT (Revisited)

3

Insert Remove Search

Unsorted
array

O(1) O(n) O(n)

Sorted array O(log n + n) O(log n + n) O(log n)

Linked list O(1) O(n) O(n)

BST (if
balanced)

O(log n) O(log n) O(log n)

Hash table O(1) O(1) O(1)

Probing hash tables

4

  Alternative strategy for collision resolution: try alternative
cells until empty cell found
  cells h0(x), h1(x), h2(x), ... tried in succession, where:

  hi(x) = (hash(x) + f(i)) % TableSize

  f is collision resolution strategy
  Because all data goes in table, bigger table needed

Linear probing

5

  linear probing: resolve collisions in slot i by putting colliding
element into next available slot (i+1, i+2, ...)

  Pseudocode for insert:
 first probe = h(value)
 while (table[probe] occupied)
 probe = (probe + 1) % TableSize
 table[probe] = value

  add 41, 34, 7, 18, then 21, then 57

  lookup/search algorithm modified - have to loop until we find
the element or an empty slot
  What happens when the table gets mostly full?

0

1 41

2

3

4 34

5

6

7 7

8 18

9

Linear probing

6

  f(i) = i
  Probe sequence:

 0th probe = h(x) mod TableSize
 1th probe = (h(x) + 1) mod TableSize
 2th probe = (h(x) + 2) mod TableSize
 . . .
 ith probe = (h(x) + i) mod TableSize

Deletion in Linear Probing

7

  To delete 18, first search for 18

  18 found in bucket 8

  What happens if we set bucket 8 to null?
  What will happen when we search for 57?

0

1 41

2 21

3

4 34

5

6

7 7

8 18

9 57

Deletion in Linear Probing (2)

8

  Instead of setting bucket 8 to null, place a special
marker there

  When lookup encounters marker, it ignores it and
continues search
  What should insert do if it encounters marker?

  Too many markers degrades performance – rehash
if there are too many

0

1 41

2 21

3

4 34

5

6

7 7

8 X

9 57

0 49

1 58

2 9

3

4

5

6

7

8 18

9 89

Primary clustering problem

9

  clustering: nodes being placed close together by
probing, which degrades hash table's performance
  add 89, 18, 49, 58, 9

  now searching for the value 28 will have to check half
the hash table! no longer constant time...

Linear probing – clustering

10

no	
 collision	

no	
 collision	

collision	
 in	
 small	
 cluster	

collision	
 in	
 large	
 cluster	

Alternative probing strategy

11

  Primary clustering occurs with linear probing because the
same linear pattern:
  if a slot is inside a cluster, then the next slot must either:

  also be in that cluster, or
  expand the cluster

  Instead of searching forward in a linear fashion, consider
searching forward using a quadratic function

0 49

1

2 58

3 9

4

5

6

7

8 18

9 89

Quadratic probing

12

  quadratic probing: resolving collisions on slot i by
putting the colliding element into slot i+1, i+4, i+9,
i+16, ...
  add 89, 18, 49, 58, 9

  49 collides (89 is already there), so we search ahead by +1
to empty slot 0

  58 collides (18 is already there), so we search ahead by +1
to occupied slot 9, then +4 to empty slot 2

  9 collides (89 is already there), so we search ahead by +1 to
occupied slot 0, then +4 to empty slot 3

  What is the lookup algorithm?

Quadratic probing in action

13

Quadratic probing

14

  f(i) = i2

  Probe sequence:
 0th probe = h(x) mod TableSize

 1th probe = (h(x) + 1) mod TableSize
 2th probe = (h(x) + 4) mod TableSize
 3th probe = (h(x) + 9) mod TableSize
 . . .
 ith probe = (h(x) + i2) mod TableSize

Quadratic probing benefit

15

  If one of h + i2 falls into a cluster, this does not imply the
next one will

  For example, suppose an element was to be inserted in
bucket 23 in a hash table with 31 buckets
  The sequence in which the buckets would be checked is:

23, 24, 27, 1, 8, 17, 28, 10, 25, 11, 30, 20, 12, 6, 2, 0

Quadratic probing benefit

16

  Even if two buckets are initially close, the sequence in
which subsequent buckets are checked varies greatly
  Again, with TableSize = 31, compare the first 16 buckets which

are checked starting with elements 22 and 23:

 22 22, 23, 26, 0, 7, 16, 27, 9, 24, 10, 29, 19, 11, 5, 1, 30

 23 23, 24, 27, 1, 8, 17, 28, 10, 25, 11, 30, 20, 12, 6, 2, 0

  Quadratic probing solves the problem of primary
clustering

Quadratic probing drawbacks

17

  Suppose we have 8 buckets:
 12 % 8 = 1, 22 % 8 = 4, 32 % 8 = 1
  In this case, we are checking bucket h(x) + 1 twice having

checked only one other bucket

  No guarantee that
 (h(x) + i2) % TableSize
 will cycle through 0, 1, ..., TableSize – 1

Quadratic probing

18

  Solution:
  require that TableSize be prime
  (h(x) + i2) % TableSize for i = 0, ..., (TableSize – 1)/2 will cycle

through (TableSize + 1)/2 values before repeating

  Example with TableSize = 11:
0, 1, 4, 9, 16 ≡ 5, 25 ≡ 3, 36 ≡ 3

  With TableSize = 13:
0, 1, 4, 9, 16 ≡ 3, 25 ≡ 12, 36 ≡ 10, 49 ≡ 10

  With TableSize = 17:
0, 1, 4, 9, 16, 25 ≡ 8, 36 ≡ 2, 49 ≡ 15, 64 ≡ 13, 81 ≡ 13

Note: the symbol ≡ means "% TableSize"

Hashing practice problem

19

  Draw a diagram of the state of a hash table of size 10,
initially empty, after adding the following elements.
  h(x) = x mod 10 as the hash function.
  Assume that the hash table uses linear probing.

7, 84, 31, 57, 44, 19, 27, 14, and 64

  Repeat the problem above using quadratic probing.

Double hashing

20

  double hashing: resolve collisions on slot i by applying a
second hash function

  f(i) = i * g(x)
where g is a second hash function
  limitations on what g can evaluate to?
  recommended: g(x) = R – (x % R), where R prime smaller than

TableSize

  Psuedocode for double hashing:
if (table is full) error
probe = h(value)
offset = g(value)
while (table[probe] occupied)
 probe = (probe + offset) % TableSize
table[probe] = value

Double Hashing Example

21

0
1
2
3
4
5
6 41

41

0
1
2
3
4
5
6

16

41

16

0
1
2
3
4
5
6

16

40
41

40

0
1
2
3
4
5
6

47
16

40
41

47

0
1
2
3
4
5
6

47
16
10

40
41

10

0
1
2
3
4
5
6

47
16
10
55
40
41

55

h(x) = x % 7 and g(x) = 5 – (x % 5)

Probes 1 1 1 2 1 2

Double hashing

22

  f(i) = i * g(x)

  Probe sequence:
 0th probe = h(x) % TableSize
 1th probe = (h(x) + g(x)) % TableSize
 2th probe = (h(x) + 2*g(x)) % TableSize
 3th probe = (h(x) + 3*g(x)) % TableSize
 . . .
 ith probe = (h(x) + i*g(x)) % TableSize

