CSE 373 Data Structures and Algorithms

Lecture 17: Hashing II

Hash versus tree

Which is better, a hash set or a tree set?

Hash	Tree	

Implementing Set ADT (Revisited)

	Insert	Remove	Search	
Unsorted array	O(I)	O(n)	O(n)	
Sorted array	$O(\log n + n)$	$O(\log n + n)$	O(log n)	
Linked list	O(I)	O(n)	O(n)	
BST (if balanced)	\sim \cup \cup \cup \cup \cup \cup $($ \cup \cap p $)$		O(log n)	
Hash table O(I)		O(I)	O(I)	

3

Probing hash tables

- Alternative strategy for collision resolution: try alternative cells until empty cell found
 - cells $h_0(x)$, $h_1(x)$, $h_2(x)$, ... tried in succession, where:
 - $h_i(x) = (hash(x) + f(i)) \%$ TableSize
 - f is collision resolution strategy
 - Because all data goes in table, bigger table needed

Linear probing

linear probing: resolve collisions in slot i by putting colliding 0 element into next available slot (i+1, i+2, ...)

41

34

7

18

9

What happens when the table gets mostly full?

Linear probing

▶ f(i) = i

Probe sequence:

 0^{th} probe = $h(x) \mod TableSize$ 1^{th} probe = $(h(x) + 1) \mod TableSize$ 2^{th} probe = $(h(x) + 2) \mod TableSize$...

$$i^{th}$$
 probe = ($h(x) + i$) mod TableSize

Deletion in Linear Probing

- To delete 18, first search for 18
- 18 found in bucket 8
- What happens if we set bucket 8 to null?
 - What will happen when we search for 57?

Deletion in Linear Probing (2)

- Instead of setting bucket 8 to null, place a special marker there
- When lookup encounters marker, it ignores it and continues search
 - What should insert do if it encounters marker?
- Too many markers degrades performance rehash if there are too many

Primary clustering problem

- clustering: nodes being placed close together by probing, which degrades hash table's performance
 add 89, 18, 49, 58, 9
 - now searching for the value 28 will have to check half the hash table! no longer constant time...

Linear probing – clustering

Alternative probing strategy

- Primary clustering occurs with linear probing because the same linear pattern:
 - if a slot is inside a cluster, then the next slot must either:
 - also be in that cluster, or
 - expand the cluster
- Instead of searching forward in a linear fashion, consider searching forward using a quadratic function

Quadratic probing

- quadratic probing: resolving collisions on slot i by putting the colliding element into slot i+1, i+4, i+9, i+16, ...
 - add 89, 18, 49, 58, 9
 - 49 collides (89 is already there), so we search ahead by +1 to empty slot 0
 - 58 collides (18 is already there), so we search ahead by +1 to occupied slot 9, then +4 to empty slot 2
 - 9 collides (89 is already there), so we search ahead by +1 to occupied slot 0, then +4 to empty slot 3
 - What is the lookup algorithm?

Quadratic probing in action

hash (89, 10) = 9 hash (, 10) = 8 hash (, 10) = 9 hash (, 10) = 8 hash (, 10) = 9

After insert 89 After insert 18 After insert 49 After insert 58 After insert 9

0			49	49	49
1					
2				58	58
3					9
4					
5					
6					
7					
8		18	18	18	18
9	89	89	89	89	89

Quadratic probing

• $f(i) = i^2$

Probe sequence:

 0^{th} probe = $h(x) \mod TableSize$ 1^{th} probe = $(h(x) + 1) \mod TableSize$ 2^{th} probe = $(h(x) + 4) \mod TableSize$ 3^{th} probe = $(h(x) + 9) \mod TableSize$

 i^{th} probe = $(h(x) + i^2) \mod TableSize$

Quadratic probing benefit

If one of h + i² falls into a cluster, this does not imply the next one will

- For example, suppose an element was to be inserted in bucket 23 in a hash table with 31 buckets
 - The sequence in which the buckets would be checked is: 23, 24, 27, 1, 8, 17, 28, 10, 25, 11, 30, 20, 12, 6, 2, 0

Quadratic probing benefit

- Even if two buckets are initially close, the sequence in which subsequent buckets are checked varies greatly
 - Again, with TableSize = 31, compare the first 16 buckets which are checked starting with elements 22 and 23:

 22
 22, 23, 26, 0, 7, 16, 27, 9, 24, 10, 29, 19, 11, 5, 1, 30

 23
 23, 24, 27, 1, 8, 17, 28, 10, 25, 11, 30, 20, 12, 6, 2, 0

 Quadratic probing solves the problem of primary clustering Quadratic probing drawbacks

Suppose we have 8 buckets:

 $|^2 \% 8 = |, 2^2 \% 8 = 4, 3^2 \% 8 = |$

- In this case, we are checking bucket h(x) + 1 twice having checked only one other bucket
- No guarantee that

 $(h(x) + i^2)$ % TableSize will cycle through 0, 1, ..., TableSize – 1

Quadratic probing

Solution:

- require that TableSize be prime
- (h(x) + i²) % TableSize for i = 0, ..., (TableSize 1)/2 will cycle through (TableSize + 1)/2 values before repeating

• Example with *TableSize* = 11: 0, 1, 4, 9, 16 \equiv 5, 25 \equiv 3, 36 \equiv 3 • Mith. TableSize = 12:

- ▶ With TableSize = 13: 0, 1, 4, 9, 16 \equiv 3, 25 \equiv 12, 36 \equiv 10, 49 \equiv 10
- ▶ With TableSize = 17: 0, 1, 4, 9, 16, 25 \equiv 8, 36 \equiv 2, 49 \equiv 15, 64 \equiv 13, 81 \equiv 13

Note: the symbol \equiv means "% TableSize"

Hashing practice problem

- Draw a diagram of the state of a hash table of size 10, initially empty, after adding the following elements.
 h(x) = x mod 10 as the hash function.
 - Assume that the hash table uses linear probing.

7, 84, 31, 57, 44, 19, 27, 14, and 64

Repeat the problem above using quadratic probing.

Double hashing

- double hashing: resolve collisions on slot i by applying a second hash function
- f(i) = i * g(x)where g is a second hash function
 - limitations on what g can evaluate to?
 - recommended: g(x) = R (x % R), where R prime smaller than TableSize

Psuedocode for double hashing:

```
if (table is full) error
probe = h(value)
offset = g(value)
while (table[probe] occupied)
    probe = (probe + offset) % TableSize
table[probe] = value
```

Double Hashing Example

h(x) = x % 7 and g(x) = 5 - (x % 5)

21

Double hashing

• f(i) = i * g(x)

Probe sequence:

 $0^{th} \text{ probe} = h(x) \% \text{ TableSize}$ $1^{th} \text{ probe} = (h(x) + g(x)) \% \text{ TableSize}$ $2^{th} \text{ probe} = (h(x) + 2^*g(x)) \% \text{ TableSize}$ $3^{th} \text{ probe} = (h(x) + 3^*g(x)) \% \text{ TableSize}$ $i^{th} \text{ probe} = (h(\underline{x}) + i^*g(\underline{x})) \% \text{ TableSize}$