CSE 373

Data Structures and Algorithms

Lecture 17: Hashing II

Hash versus tree

- Which is better, a hash set or a tree set?

Hash	Tree

Implementing Set ADT (Revisited)

	Insert	Remove	Search
Unsorted array	$\mathrm{O}(1)$	$\mathrm{O}(n)$	$\mathrm{O}(n)$
Sorted array	$\mathrm{O}(\log n+n)$	$\mathrm{O}(\log n+n)$	$\mathrm{O}(\log n)$
Linked list	$\mathrm{O}(1)$	$\mathrm{O}(n)$	$\mathrm{O}(n)$
BST (if balanced)	$\mathrm{O}(\log n)$	$\mathrm{O}(\log n)$	$\mathrm{O}(\log n)$
Hash table	$\mathrm{O}(\mathrm{I})$	$\mathrm{O}(\mathrm{I})$	$\mathrm{O}(\mathrm{I})$

Probing hash tables

- Alternative strategy for collision resolution: try alternative cells until empty cell found
- cells $h_{0}(x), h_{1}(x), h_{2}(x), \ldots$ tried in succession, where:
- $h_{i}(x)=($ hash $(x)+f(i))$ \% TableSize
- f is collision resolution strategy
- Because all data goes in table, bigger table needed

Linear probing

- linear probing: resolve collisions in slot i by putting colliding 0 element into next available slot ($i+1, i+2, \ldots$)
- Pseudocode for insert:

```
    first probe = h(value)
    while (table[probe] occupied)
    probe = (probe + 1) % TableSize
    table[probe] = value
```

- add $4 \mathrm{I}, 34,7$, 18 , then 2 I , then 57
- lookup/search algorithm modified - have to loop until we find 7 the element or an empty slot
- What happens when the table gets mostly full?

0	
I	41
2	
3	
4	34
5	
6	
7	7
8	18
9	

Linear probing

- $f(i)=i$
- Probe sequence:
$0^{\text {th }}$ probe $=h(x)$ mod TableSize
$1^{\text {th }}$ probe $=(h(x)+1)$ mod TableSize
$2^{\text {th }}$ probe $=(h(x)+2)$ mod TableSize
$i^{\text {th }}$ probe $=(h(x)+i) \bmod$ TableSize

Deletion in Linear Probing

- To delete I 8 , first search for 18
- 18 found in bucket 8
- What happens if we set bucket 8 to null?
- What will happen when we search for 57?

0	
1	41
2	21
3	
4	34
5	
6	
7	7
8	18
9	57

Deletion in Linear Probing (2)

- Instead of setting bucket 8 to null, place a special marker there

0	
I	41
2	21
3	
4	34
5	
6	
7	7
8	X
9	57

Primary clustering problem

- clustering: nodes being placed close together by probing, which degrades hash table's performance - add 89, $18,49,58,9$
- now searching for the value 28 will have to check half the hash table! no longer constant time...

0	49
1	58
2	9
3	
4	
5	
6	
7	
8	18
9	89

Linear probing - clustering

Alternative probing strategy

- Primary clustering occurs with linear probing because the same linear pattern:
- if a slot is inside a cluster, then the next slot must either:
- also be in that cluster, or
- expand the cluster
- Instead of searching forward in a linear fashion, consider searching forward using a quadratic function

Quadratic probing

- quadratic probing: resolving collisions on slot i by putting the colliding element into slot $i+1, i+4, i+9$, i+ I6, ...
- add $89,18,49,58,9$
- 49 collides (89 is already there), so we search ahead by +1 to empty slot 0
- 58 collides (18 is already there), so we search ahead by +1 to occupied slot 9 , then +4 to empty slot 2
- 9 collides (89 is already there), so we search ahead by +I to occupied slot 0 , then +4 to empty slot 3
- What is the lookup algorithm?

Quadratic probing in action

```
hash ( 89, 10) = 9
hash ( 18, 10) = 8
hash ( 49, 10) = 9
hash ( 58, 10) = 8
hash ( 9, 10) = 9
```

After insert 89 After insert 18 After insert 49 After insert 58 After insert 9

Quadratic probing

- $f(i)=i^{2}$
- Probe sequence:
$0^{\text {th }}$ probe $=h(x) \bmod$ TableSize
$I^{\text {th }}$ probe $=(h(x)+I)$ mod TableSize
$2^{\text {th }}$ probe $=(h(x)+4)$ mod TableSize
$3^{\text {th }}$ probe $=(h(x)+9)$ mod TableSize
$i^{\text {th }}$ probe $=\left(h(x)+i^{2}\right)$ mod TableSize

Quadratic probing benefit

- If one of $h+i^{2}$ falls into a cluster, this does not imply the next one will

- For example, suppose an element was to be inserted in bucket 23 in a hash table with 3I buckets
- The sequence in which the buckets would be checked is:
$23,24,27, I, 8,17,28,10,25,11,30,20,12,6,2,0$

Quadratic probing benefit

- Even if two buckets are initially close, the sequence in which subsequent buckets are checked varies greatly
- Again, with TableSize = 3I, compare the first 16 buckets which are checked starting with elements 22 and 23:

$$
\begin{aligned}
& 22 \text { 22, 23, 26, 0, 7, } 16,27,9,24,10,29,19,1|, 5, \quad|, 30 \\
& 2323,24,27, ।, 8,17,28,10,25,| |, 30,20,12,6,2,
\end{aligned}
$$

- Quadratic probing solves the problem of primary clustering

Quadratic probing drawbacks

- Suppose we have 8 buckets:

$$
1^{2} \% 8=1,2^{2} \% 8=4,3^{2} \% 8=1
$$

- In this case, we are checking bucket $h(x)+1$ twice having checked only one other bucket
- No guarantee that

$$
\left(h(x)+i^{2}\right) \% \text { TableSize }
$$

will cycle through $0, I, \ldots$, TableSize - I

Quadratic probing

- Solution:
- require that TableSize be prime
- $\left(h(x)+i^{2}\right) \%$ TableSize for $i=0, \ldots,($ TableSize $-I) / 2$ will cycle through (TableSize + I)/2 values before repeating
- Example with TableSize = II:
$0, I, 4,9,16 \equiv 5,25 \equiv 3,36 \equiv 3$
- With TableSize = 13:
$0, I, 4,9, I 6 \equiv 3,25 \equiv 12,36 \equiv \operatorname{IO}, 49 \equiv 10$
- With TableSize = 17:
$0, \perp, 4,9,16,25 \equiv 8,36 \equiv 2,49 \equiv 15,64 \equiv|3,8| \equiv 13$

Note: the symbol \equiv means "\% TableSize"

Hashing practice problem

- Draw a diagram of the state of a hash table of size IO, initially empty, after adding the following elements.
- $h(x)=x \bmod 10$ as the hash function.
- Assume that the hash table uses linear probing.
$7,84,3 \mathrm{I}, 57,44,19,27,14$, and 64
- Repeat the problem above using quadratic probing.

Double hashing

- double hashing: resolve collisions on slot i by applying a second hash function
- $f(i)=i^{*} g(x)$
where g is a second hash function
- limitations on what g can evaluate to?
- recommended: $g(x)=R-(x \% R)$, where R prime smaller than TableSize
- Psuedocode for double hashing:

```
if (table is full) error
probe = h(value)
offset = g(value)
while (table[probe] occupied)
        probe = (probe + offset) % TableSize
table[probe] = value
```


Double Hashing Example

$$
h(x)=x \% 7 \text { and } g(x)=5-(x \% 5)
$$

41
16
40
47
10
55

0		0		0		0		0		0	
1		1		1		1	47	1	47	1	47
2		2	16	2	16	2	16	2	16	2	16
3		3		3		3		3	10	3	10
4		4		4		4		4		4	55
5		5		5	40	5	40	5	40	5	40
6	41	6	41	6	41	6	41	6	41	6	41
Probes	1		1		1		2		1		2

Double hashing

- $f(i)=i * g(x)$
- Probe sequence:

$$
\begin{aligned}
& 0^{\text {th }} \text { probe }=h(x) \% \text { TableSize } \\
& I^{\text {th }} \text { probe }=(h(x)+g(x)) \% \text { TableSize } \\
& 2^{\text {th }} \text { probe }=\left(h(x)+2^{*} g(x)\right) \% \text { TableSize } \\
& 3^{\text {th }} \text { probe }=\left(h(x)+3^{*} g(x)\right) \% \text { TableSize }
\end{aligned}
$$

$$
i^{\text {th }} \text { probe }=\left(h(\underline{x})+i^{*} g(\underline{x})\right) \% \text { TableSize }
$$

