
CSE 373
Data Structures and Algorithms

Lecture 16: Hashing

Set ADT

2

  set: A collection that does not allow duplicates
  We don't think of a set as having indices or any order

  Basic set operations:
  insert: Add an element to the set (order doesn't matter).
  remove: Remove an element from the set.
  search: Efficiently determine if an element is a member of the set.

set.contains("to") true

set	

"the" "of"

"from"
"to"

"she"
"you"

"him" "why"

"in"

"down"
"by"

"if"

set.contains("be") false

Implementing Set ADT (Revisited)

3

Insert Remove Search

Unsorted
array O(1) O(n) O(n)

Sorted
array O(log n + n) O(log n + n) O(log n)

Linked list O(1) O(n) O(n)

BST (if
balanced) O(log n) O(log n) O(log n)

A different tactic

4

  How do you check to see if a word is in the dictionary?
  linear search?
  binary search?
  A – Z tabs?

0

…

b - 1 elements (e.g., strings)

hash function
h(element)

hash table

Hash tables

5

  table maintains b different "buckets” (numbered 0 to b-1)
  hash function maps elements to value in 0 to b – 1
  use hash to determine which bucket an element belongs

in and only searches/modifies this one bucket

Hashing, hash functions

6

  The idea: We somehow map every element into some index in
the array ("hash" it); this is its one and only place that it should
go
  Lookup becomes constant-time: simply look at that one slot again

later to see if the element is there
  insert, remove, search all become O(1) !

  For now, let's look at storing integers
  Assume the following "hash function" h:

Store int i at index i (a direct mapping)
  if i >= array.length, store i at index (i % array.length)

  h(i) = i % array.length

Simple Integer Hash Functions

7

  elements = integers
  TableSize = 10

  h(i) = i % 10

  Insert: 7, 18, 41, 34

0
1
2
3
4
5
6
7
8
9

Simple Integer Hash Functions

8

  elements = integers
  TableSize = 10

  h(i) = i % 10

  Insert: 7, 18, 41, 34

0
1
2
3
4
5
6
7 7
8
9

Simple Integer Hash Functions

9

  elements = integers
  TableSize = 10

  h(i) = i % 10

  Insert: 7, 18, 41, 34

0
1
2
3
4
5
6
7 7
8
9

Simple Integer Hash Functions

10

  elements = integers
  TableSize = 10

  h(i) = i % 10

  Insert: 7, 18, 41, 34

0
1
2
3
4
5
6
7 7
8 18
9

Simple Integer Hash Functions

11

  elements = integers
  TableSize = 10

  h(i) = i % 10

  Insert: 7, 18, 41, 34

0
1
2
3
4
5
6
7 7
8 18
9

Simple Integer Hash Functions

12

  elements = integers
  TableSize = 10

  h(i) = i % 10

  Insert: 7, 18, 41, 34

0
1 41
2
3
4
5
6
7 7
8 18
9

Simple Integer Hash Functions

13

  elements = integers
  TableSize = 10

  h(i) = i % 10

  Insert: 7, 18, 41, 34

0
1 41
2
3
4
5
6
7 7
8 18
9

Simple Integer Hash Functions

14

  elements = integers
  TableSize = 10

  h(i) = i % 10

  Insert: 7, 18, 41, 34

0
1 41
2
3
4 34
5
6
7 7
8 18
9

Hash function example

15

  Desirable properties of a hash function
  efficient computation
  deterministic/stable result
  uniformly distributes values over range

  h(i) = i % 10
  Does this function have the properties above?

  Drawbacks?
  Lose all ordering information:

  getMin, getMax, removeMin, removeMax
  Ordered traversals; printing items in sorted order

0
1 41
2
3
4 34
5
6
7 7
8 18
9

Hash collisions

16

  Example: add 7, 18, 41, 34, then 21
  21 hashes into the same slot as 41!
  Should 21 replace 41?

  No!

  collision: the event that two hash table
elements map into the same slot in the array

  collision resolution: means for fixing
collisions in a hash table

0
1 41
2
3
4 34
5
6
7 7
8 18
9

Hash function for strings

17

  elements = Strings
  How do we map a string into an integer index? (i.e., how do

we "hash" it?)

  Let's view a string by its letters:
  String s : s0, s1, s2, …, sn-1

  One possible hash function:
  Treat first character as an int, and hash on that

  h(s) = s0 % TableSize
  Is this a good hash function? When will strings “collide”?
  What about h(s) = s.length % TableSize ?

Better string hash functions

18

  Another possible hash function:
  Treat each character as an int, sum them, and hash on that

 h(s) = % TableSize
  What's wrong with this hash function? When will strings collide?

  A third option (polynomial accumulation)
  Perform a weighted sum of the letters, and hash on that

 h(s) = % TableSize

  Coming up with a great hash function is hard.

0

1

2

3

4

5

6

7

8

9

10

107

22 12 42

Chaining

19

  chaining: All keys that map to the same hash value are
kept in a linked list

0

1

2

3

4

5

6

7

8

9

10

107

22 12 42

Load factor

20

  load factor (λ): ratio of elements to capacity
  load factor = size / capacity = 5 / 10 = 0.5

Analysis of hash table search
  Analysis of search, with chaining:

  Unsuccessful: λ
  The average length of a list at hash(i)

  Successful: 1 + (λ/2)
  One node, plus half the average length of a list (not including the item)

Implementing Set with Hash Table

22

  Each Set entry adds an element to the table
  Hash function will tell us where to put the element in the hash

table

  Runtime
  insert: O(1)
  remove: O(1)
  search: O(1)

Implementing Set with Hash Table

23

public interface StringSet {

 public boolean add(String value);

 public boolean contains(String value);

 public void print();

 public boolean remove(String value);

 public int size();

}

StringHashEntry

24

public class StringHashEntry {

 public String data; // data stored at this node

 public StringHashEntry next; // reference to the next entry

 // Constructs a single hash entry.

 public StringHashEntry(String data) {

 this(data, null);

 }

 public StringHashEntry(String data, StringHashEntry next) {

 this.data = data;

 this.next = next;

 }

}

StringHashSet class

25

public class StringHashSet implements StringSet {
 private static final int DEFAULT_SIZE = 11;
 private StringHashEntry[] table;
 private int size;

 ...
}

  Client code talks to the StringHashSet, not to the entry
objects stored in it

  The array (table) is of StringHashEntry
  Each element in the array is a linked list of elements that have the

same hash

Set implementation: search

26

public boolean contains(String value) {

 // figure out where value should be...

 int valuePosition = hash(value);

 // check to see if the value is in the set

 StringHashEntry temp = table[valuePosition];

 while (temp != null) {

 if (temp.data.equals(value)) {

 return true;

 }

 temp = temp.next;

 }

 // otherwise, the value was not found

 return false;

}

Set implementation: insert

27

  Similar structure to contains
  Calculate hash of new element
  Check if the element is already in the set

  Add the element to the front of the list that is at
table[hash(value)]

Set implementation: insert

28

 public boolean add(String value) {

 int valuePosition = hash(value);

 // check to see if the value is already in the set

 StringHashEntry temp = table[valuePosition];

 while (temp != null) {

 if (temp.data.equals(value)) {

 return false;

 }

 temp = temp.next;

 }

 // add the value to the set

 StringHashEntry newEntry = new StringHashEntry(value, table[valuePosition]);

 table[valuePosition] = newEntry;

 size++;

 return true;

 }

