
CSE 373
Data Structures and Algorithms

Lecture 16: Hashing

Set ADT

2

  set: A collection that does not allow duplicates
  We don't think of a set as having indices or any order

  Basic set operations:
  insert: Add an element to the set (order doesn't matter).
  remove: Remove an element from the set.
  search: Efficiently determine if an element is a member of the set.

set.contains("to") true

set	

"the" "of"

"from"
"to"

"she"
"you"

"him" "why"

"in"

"down"
"by"

"if"

set.contains("be") false

Implementing Set ADT (Revisited)

3

Insert Remove Search

Unsorted
array O(1) O(n) O(n)

Sorted
array O(log n + n) O(log n + n) O(log n)

Linked list O(1) O(n) O(n)

BST (if
balanced) O(log n) O(log n) O(log n)

A different tactic

4

  How do you check to see if a word is in the dictionary?
  linear search?
  binary search?
  A – Z tabs?

0

…

b - 1 elements (e.g., strings)

hash function
h(element)

hash table

Hash tables

5

  table maintains b different "buckets” (numbered 0 to b-1)
  hash function maps elements to value in 0 to b – 1
  use hash to determine which bucket an element belongs

in and only searches/modifies this one bucket

Hashing, hash functions

6

  The idea: We somehow map every element into some index in
the array ("hash" it); this is its one and only place that it should
go
  Lookup becomes constant-time: simply look at that one slot again

later to see if the element is there
  insert, remove, search all become O(1) !

  For now, let's look at storing integers
  Assume the following "hash function" h:

Store int i at index i (a direct mapping)
  if i >= array.length, store i at index (i % array.length)

  h(i) = i % array.length

Simple Integer Hash Functions

7

  elements = integers
  TableSize = 10

  h(i) = i % 10

  Insert: 7, 18, 41, 34

0
1
2
3
4
5
6
7
8
9

Simple Integer Hash Functions

8

  elements = integers
  TableSize = 10

  h(i) = i % 10

  Insert: 7, 18, 41, 34

0
1
2
3
4
5
6
7 7
8
9

Simple Integer Hash Functions

9

  elements = integers
  TableSize = 10

  h(i) = i % 10

  Insert: 7, 18, 41, 34

0
1
2
3
4
5
6
7 7
8
9

Simple Integer Hash Functions

10

  elements = integers
  TableSize = 10

  h(i) = i % 10

  Insert: 7, 18, 41, 34

0
1
2
3
4
5
6
7 7
8 18
9

Simple Integer Hash Functions

11

  elements = integers
  TableSize = 10

  h(i) = i % 10

  Insert: 7, 18, 41, 34

0
1
2
3
4
5
6
7 7
8 18
9

Simple Integer Hash Functions

12

  elements = integers
  TableSize = 10

  h(i) = i % 10

  Insert: 7, 18, 41, 34

0
1 41
2
3
4
5
6
7 7
8 18
9

Simple Integer Hash Functions

13

  elements = integers
  TableSize = 10

  h(i) = i % 10

  Insert: 7, 18, 41, 34

0
1 41
2
3
4
5
6
7 7
8 18
9

Simple Integer Hash Functions

14

  elements = integers
  TableSize = 10

  h(i) = i % 10

  Insert: 7, 18, 41, 34

0
1 41
2
3
4 34
5
6
7 7
8 18
9

Hash function example

15

  Desirable properties of a hash function
  efficient computation
  deterministic/stable result
  uniformly distributes values over range

  h(i) = i % 10
  Does this function have the properties above?

  Drawbacks?
  Lose all ordering information:

  getMin, getMax, removeMin, removeMax
  Ordered traversals; printing items in sorted order

0
1 41
2
3
4 34
5
6
7 7
8 18
9

Hash collisions

16

  Example: add 7, 18, 41, 34, then 21
  21 hashes into the same slot as 41!
  Should 21 replace 41?

  No!

  collision: the event that two hash table
elements map into the same slot in the array

  collision resolution: means for fixing
collisions in a hash table

0
1 41
2
3
4 34
5
6
7 7
8 18
9

Hash function for strings

17

  elements = Strings
  How do we map a string into an integer index? (i.e., how do

we "hash" it?)

  Let's view a string by its letters:
  String s : s0, s1, s2, …, sn-1

  One possible hash function:
  Treat first character as an int, and hash on that

  h(s) = s0 % TableSize
  Is this a good hash function? When will strings “collide”?
  What about h(s) = s.length % TableSize ?

Better string hash functions

18

  Another possible hash function:
  Treat each character as an int, sum them, and hash on that

 h(s) = % TableSize
  What's wrong with this hash function? When will strings collide?

  A third option (polynomial accumulation)
  Perform a weighted sum of the letters, and hash on that

 h(s) = % TableSize

  Coming up with a great hash function is hard.

0

1

2

3

4

5

6

7

8

9

10

107

22 12 42

Chaining

19

  chaining: All keys that map to the same hash value are
kept in a linked list

0

1

2

3

4

5

6

7

8

9

10

107

22 12 42

Load factor

20

  load factor (λ): ratio of elements to capacity
  load factor = size / capacity = 5 / 10 = 0.5

Analysis of hash table search
  Analysis of search, with chaining:

  Unsuccessful: λ
  The average length of a list at hash(i)

  Successful: 1 + (λ/2)
  One node, plus half the average length of a list (not including the item)

Implementing Set with Hash Table

22

  Each Set entry adds an element to the table
  Hash function will tell us where to put the element in the hash

table

  Runtime
  insert: O(1)
  remove: O(1)
  search: O(1)

Implementing Set with Hash Table

23

public interface StringSet {

 public boolean add(String value);

 public boolean contains(String value);

 public void print();

 public boolean remove(String value);

 public int size();

}

StringHashEntry

24

public class StringHashEntry {

 public String data; // data stored at this node

 public StringHashEntry next; // reference to the next entry

 // Constructs a single hash entry.

 public StringHashEntry(String data) {

 this(data, null);

 }

 public StringHashEntry(String data, StringHashEntry next) {

 this.data = data;

 this.next = next;

 }

}

StringHashSet class

25

public class StringHashSet implements StringSet {
 private static final int DEFAULT_SIZE = 11;
 private StringHashEntry[] table;
 private int size;

 ...
}

  Client code talks to the StringHashSet, not to the entry
objects stored in it

  The array (table) is of StringHashEntry
  Each element in the array is a linked list of elements that have the

same hash

Set implementation: search

26

public boolean contains(String value) {

 // figure out where value should be...

 int valuePosition = hash(value);

 // check to see if the value is in the set

 StringHashEntry temp = table[valuePosition];

 while (temp != null) {

 if (temp.data.equals(value)) {

 return true;

 }

 temp = temp.next;

 }

 // otherwise, the value was not found

 return false;

}

Set implementation: insert

27

  Similar structure to contains
  Calculate hash of new element
  Check if the element is already in the set

  Add the element to the front of the list that is at
table[hash(value)]

Set implementation: insert

28

 public boolean add(String value) {

 int valuePosition = hash(value);

 // check to see if the value is already in the set

 StringHashEntry temp = table[valuePosition];

 while (temp != null) {

 if (temp.data.equals(value)) {

 return false;

 }

 temp = temp.next;

 }

 // add the value to the set

 StringHashEntry newEntry = new StringHashEntry(value, table[valuePosition]);

 table[valuePosition] = newEntry;

 size++;

 return true;

 }

