
CSE 373
Data Structures and Algorithms

Lecture 15: Priority Queues (Heaps) III

Generic Collections

Generics and arrays

3

public class Foo<T> {
 private T myField; // ok

 public void method1(T param) {
 myField = new T(); // error
 T[] a = new T[10]; // error
 }
}

  You cannot create objects or arrays of a parameterized
type.
  Why not?

Generics/arrays, fixed

4

public class Foo<T> {
 private T myField; // ok

 public void method1(T param) {
 myField = param; // ok
 T[] a2 = (T[])(new Object[10]); // ok
 }
}

  But you can declare variables of that type, accept them as
parameters, return them, or create arrays by casting
Object[].

The compareTo method

5

  The standard way for a Java class to define a comparison
function for its objects is to define a compareTo method.
  Example: in the String class, there is a method:

 public int compareTo(String other)

  A call of A.compareTo(B) will return:
a value < 0 if A comes "before" B
a value > 0 if A comes "after" B
or 0 if A and B are "equal”

Comparable
 public interface Comparable<E> {
 public int compareTo(E other);
 }

  A class can implement the Comparable interface to
define a natural ordering function for its objects.

  A call to the compareTo method should return:
a value < 0 if the other object comes "before" this one
a value > 0 if the other object comes "after" this one
or 0 if the other object is considered "equal" to this

6

Comparable template

7

 public class name implements Comparable<name> {

 ...

 public int compareTo(name other) {
 ...
 }
 }

  Exercise: Add a compareTo method to the PrintJob class such that
PrintJobs are ordered according to their priority (ascending – lower
priorities are more important than higher ones).

Comparable example

8

public class PrintJob implements Comparable<PrintJob> {
 private String user;
 private int number;
 private int priority;

 public PrintJob(int number, String user, int priority) {
 this.number = number;
 this.user = user;
 this.priority = priority;
 }

 public int compareTo(PrintJob otherJob) {
 return priority - otherJob.priority;
 }

 public String toString() {
 return number + " (" + user + "):" + priority;
 }
}

d-Heaps

Generalization: d-Heaps
  Each node has d children
  Still can be represented by

array
  Good choices for d are a

power of 2
  Only because multiplying

and dividing by powers of 2
is fast on a computer

  How does height compare
to binary heap?

10

4	

9	
 6	
 5	
 4	

3	
 2	

1	

8	
 10	
 12	

7	

11	

2	
 7	
 3	
 8	
 5	
 12	
 11	
 10	
 6	
 9	
 1	

Operations on d-Heap
  insert: runtime =

  remove: runtime =

  Does this help insert or remove more?

11

depth	
 of	
 tree	

decreases,	

Θ(logd	
 n)	

bubbleDown	
 requires	
 more	

comparisons	
 to	
 find	
 min,	

Θ(d	
 logd	
 n)	

Other Priority Queue Operations

More Min-Heap Operations
  decreasePriority: reduce the priority value of an element

in the queue

  Solution: change priority and ________________________

  increasePriority: increase the priority value of an
element in the queue

  Solution: change priority and _________________________

  How do we find the element in the queue? What about
duplicates?
  Need a reference to the element!

13

More Min-Heap Operations
  remove: given a reference to an object in the queue,

remove the object from the queue

  Solution: set priority to negative infinity, percolate up to root
and deleteMin

  findMax

  Solution: Can look at all leaves, but not really the point of a
min-heap!

14

Building a Heap

15

  Given a list of numbers, how would you build a heap?

  At every point, the new item may need to percolate all
the way through the heap

  Adding the items one at a time is Θ(n log n) in the worst
case

  A more sophisticated algorithm does it in Θ(n)

O(N) buildHeap
  First, add all elements arbitrarily maintaining the

completeness property
  Then fix the heap order property by performing a "bubble

down" operation on every node that is not a leaf, starting
from the rightmost internal node and working back to the
root

16

6 60 14

18 21

45

32 45 60 21

18 14

6

32

buildHeap practice problem
  Each element in the list [12, 5, 11, 3, 10, 6, 9, 4, 8, 1, 7, 2]

has been inserted into a heap such that the completeness
property has been maintained.

  Now, fix the heap's order property by "bubbling down"
every internal node.

17

2	
 7	
 1	
 8	
 4	

9	
 6	
 10	
 3	

11	
 5	

12	

6	
 7	
 1	
 8	
 4	

9	
 2	
 10	
 3	

11	
 5	

12	

11	
 7	
 10	
 8	
 4	

9	
 6	
 5	
 3	

2	
 1	

12	

6	
 7	
 10	
 8	
 4	

9	
 2	
 1	
 3	

11	
 5	

12	

11	
 7	
 10	
 8	
 4	

9	
 6	
 1	
 3	

2	
 5	

12	

18

Final State of the Heap

19

11	
 7	
 10	
 8	
 12	

9	
 6	
 5	
 4	

2	
 3	

1	

Different Heaps

20

11	
 7	
 10	
 8	
 12	

9	
 6	
 5	
 4	

2	
 3	

1	

11	
 7	
 10	
 8	
 12	

9	
 6	
 4	
 5	

2	
 3	

1	

Successive	
 inserts	
 Θ(n	
 log	
 n):	
 	
 buildHeap	
 Θ(n):	
 	

But	
 it	
 doesn't	
 maKer	
 because	
 they	
 are	
 both	
 heaps.	

Heap Sort

Heap sort
  heap sort: an algorithm to sort an array of N elements

by turning the array into a heap, then doing a remove N
times
  The elements will come out in sorted order!

  What is the runtime?

  This algorithm is not very space-efficient. Why not?

22

Improved heap sort
  The heap sort shown requires a second array

  We can use a max-heap to implement an improved
version of heap sort that needs no extra storage
  Useful on low-memory devices
  Still only O(n log n) runtime
  Elegant

23

Improved heap sort 1
  Use an array heap, but with 0 as the root index
  max-heap state after buildHeap operation:

24

Improved heap sort 2
  State after one remove operation:

  Modified remove that moves element to end

25

Improved heap sort 3
  State after two remove operations:

  Notice that the largest elements are at the end
(becoming sorted!)

26

Sorting algorithms review

27

†
 According to Knuth, the average growth rate of Insertion sort is about 0.9 times

that of Selection sort and about 0.4 times that of Bubble Sort. The average growth
rate of Quicksort is about 0.74 times that of Mergesort and about 0.5 times that of
Heapsort.

Best case Average case (†) Worst
case

Bubble sort n n2 n2

Selection sort n2 n2 n2

Insertion sort n n2 n2

Mergesort n log2n n log2n n log2n

Heapsort n log2n n log2n n log2n

Quicksort n log2n n log2n n2

