
CSE 373
Data Structures and Algorithms

Lecture 15: Priority Queues (Heaps) III

Generic Collections

Generics and arrays

3

public class Foo<T> {
 private T myField; // ok

 public void method1(T param) {
 myField = new T(); // error
 T[] a = new T[10]; // error
 }
}

  You cannot create objects or arrays of a parameterized
type.
  Why not?

Generics/arrays, fixed

4

public class Foo<T> {
 private T myField; // ok

 public void method1(T param) {
 myField = param; // ok
 T[] a2 = (T[])(new Object[10]); // ok
 }
}

  But you can declare variables of that type, accept them as
parameters, return them, or create arrays by casting
Object[].

The compareTo method

5

  The standard way for a Java class to define a comparison
function for its objects is to define a compareTo method.
  Example: in the String class, there is a method:

 public int compareTo(String other)

  A call of A.compareTo(B) will return:
a value < 0 if A comes "before" B
a value > 0 if A comes "after" B
or 0 if A and B are "equal”

Comparable
 public interface Comparable<E> {
 public int compareTo(E other);
 }

  A class can implement the Comparable interface to
define a natural ordering function for its objects.

  A call to the compareTo method should return:
a value < 0 if the other object comes "before" this one
a value > 0 if the other object comes "after" this one
or 0 if the other object is considered "equal" to this

6

Comparable template

7

 public class name implements Comparable<name> {

 ...

 public int compareTo(name other) {
 ...
 }
 }

  Exercise: Add a compareTo method to the PrintJob class such that
PrintJobs are ordered according to their priority (ascending – lower
priorities are more important than higher ones).

Comparable example

8

public class PrintJob implements Comparable<PrintJob> {
 private String user;
 private int number;
 private int priority;

 public PrintJob(int number, String user, int priority) {
 this.number = number;
 this.user = user;
 this.priority = priority;
 }

 public int compareTo(PrintJob otherJob) {
 return priority - otherJob.priority;
 }

 public String toString() {
 return number + " (" + user + "):" + priority;
 }
}

d-Heaps

Generalization: d-Heaps
  Each node has d children
  Still can be represented by

array
  Good choices for d are a

power of 2
  Only because multiplying

and dividing by powers of 2
is fast on a computer

  How does height compare
to binary heap?

10

4	

9	 6	 5	 4	

3	 2	

1	

8	 10	 12	

7	

11	

2	 7	 3	 8	 5	 12	 11	 10	 6	 9	 1	

Operations on d-Heap
  insert: runtime =

  remove: runtime =

  Does this help insert or remove more?

11

depth	 of	 tree	
decreases,	
Θ(logd	 n)	

bubbleDown	 requires	 more	
comparisons	 to	 find	 min,	
Θ(d	 logd	 n)	

Other Priority Queue Operations

More Min-Heap Operations
  decreasePriority: reduce the priority value of an element

in the queue

  Solution: change priority and ________________________

  increasePriority: increase the priority value of an
element in the queue

  Solution: change priority and _________________________

  How do we find the element in the queue? What about
duplicates?
  Need a reference to the element!

13

More Min-Heap Operations
  remove: given a reference to an object in the queue,

remove the object from the queue

  Solution: set priority to negative infinity, percolate up to root
and deleteMin

  findMax

  Solution: Can look at all leaves, but not really the point of a
min-heap!

14

Building a Heap

15

  Given a list of numbers, how would you build a heap?

  At every point, the new item may need to percolate all
the way through the heap

  Adding the items one at a time is Θ(n log n) in the worst
case

  A more sophisticated algorithm does it in Θ(n)

O(N) buildHeap
  First, add all elements arbitrarily maintaining the

completeness property
  Then fix the heap order property by performing a "bubble

down" operation on every node that is not a leaf, starting
from the rightmost internal node and working back to the
root

16

6 60 14

18 21

45

32 45 60 21

18 14

6

32

buildHeap practice problem
  Each element in the list [12, 5, 11, 3, 10, 6, 9, 4, 8, 1, 7, 2]

has been inserted into a heap such that the completeness
property has been maintained.

  Now, fix the heap's order property by "bubbling down"
every internal node.

17

2	 7	 1	 8	 4	

9	 6	 10	 3	

11	 5	

12	

6	 7	 1	 8	 4	

9	 2	 10	 3	

11	 5	

12	

11	 7	 10	 8	 4	

9	 6	 5	 3	

2	 1	

12	

6	 7	 10	 8	 4	

9	 2	 1	 3	

11	 5	

12	

11	 7	 10	 8	 4	

9	 6	 1	 3	

2	 5	

12	

18

Final State of the Heap

19

11	 7	 10	 8	 12	

9	 6	 5	 4	

2	 3	

1	

Different Heaps

20

11	 7	 10	 8	 12	

9	 6	 5	 4	

2	 3	

1	

11	 7	 10	 8	 12	

9	 6	 4	 5	

2	 3	

1	

Successive	 inserts	 Θ(n	 log	 n):	 	 buildHeap	 Θ(n):	 	

But	 it	 doesn't	 maKer	 because	 they	 are	 both	 heaps.	

Heap Sort

Heap sort
  heap sort: an algorithm to sort an array of N elements

by turning the array into a heap, then doing a remove N
times
  The elements will come out in sorted order!

  What is the runtime?

  This algorithm is not very space-efficient. Why not?

22

Improved heap sort
  The heap sort shown requires a second array

  We can use a max-heap to implement an improved
version of heap sort that needs no extra storage
  Useful on low-memory devices
  Still only O(n log n) runtime
  Elegant

23

Improved heap sort 1
  Use an array heap, but with 0 as the root index
  max-heap state after buildHeap operation:

24

Improved heap sort 2
  State after one remove operation:

  Modified remove that moves element to end

25

Improved heap sort 3
  State after two remove operations:

  Notice that the largest elements are at the end
(becoming sorted!)

26

Sorting algorithms review

27

†
 According to Knuth, the average growth rate of Insertion sort is about 0.9 times

that of Selection sort and about 0.4 times that of Bubble Sort. The average growth
rate of Quicksort is about 0.74 times that of Mergesort and about 0.5 times that of
Heapsort.

Best case Average case (†) Worst
case

Bubble sort n n2 n2

Selection sort n2 n2 n2

Insertion sort n n2 n2

Mergesort n log2n n log2n n log2n

Heapsort n log2n n log2n n log2n

Quicksort n log2n n log2n n2

