CSE 373
Data Structures and Algorithms

Lecture 14: Priority Queues (Heaps) II




Code for add method

public void add(int value) {
// grow array if needed
1f (size >= array.length - 1) {

array = resize();

// place element into heap at bottom

size++;
int index = size;
array[index] = value;

bubbleUp () ;



The bubbleUp helper

private void bubbleUp () {
int index = size;

while (hasParent (index)
&& (parent(index) > array[index])) {
// parent/child are out of order; swap them

swap (index, parentIndex (index));

index = parentIndex (index) ;

// helpers
private boolean hasParent (int 1) { return 1 > 1; }

private int parentIndex(int 1) { return 1 / 2; }

private int parent (int 1) { return array[parentIndex(i)]; 1}



The peek operation

» peek on a min-heap is trivial; because of the heap
properties, the minimum element is always the root

peek is O(1)
peek on a max-heap would be O(1) as well, but would return
you the maximum element

2) (0

ORONOID
DETI®



Code for peek method

public int peek () {
1f (1sEmpty()) {
throw new NoSuchElementException();

return array|[1l];



Removing from a min-heap

» min-heaps support remove of the min element
must remove the root while maintaining heap properties

intuitively, the last leaf must disappear to keep it a heap

initially, just swap root with last leaf (we'll fix it)




Removing from heap, cont'd.

» must fix heap-ordering property; root is out of order
shift the root downward ("bubble down") until it's in place

swap it with its smaller child each time

What happens if we don't always swap with the smaller child?




Heap practice problem

» Show the state of the following heap after remove has
been executed on it 3 times, and state which elements are
returned by the removal.




Code for remove method

public int remove () {
int result = peek();

// move last element of array up to root
array[l] = arrayl[size];

size——;
bubbleDown () ;

return result;



The bubbleDown helper

private void bubbleDown () {
int index = 1;
while (hasLeftChild(index)) {
int childIndex = leftIndex (index) ;

if (hasRightChild (index)
&& (array[rightIndex(index)] < array[leftIndex(index)])) {

childIndex = rightIndex (index) ;

if (array[childIndex] < array[index]) {
swap (childIndex, index);
index = childIndex;
} else {
break;
}
}
}
// helpers
private int leftIndex(int 1) { return i * 2; }
private int rightIndex(int i) { return i * 2 + 1; }
private boolean hasLeftChild(int i) { return leftIndex (i) <= size; }

private boolean hasRightChild(int i) { return rightIndex (i) <= size; }

10



Advantages of array heap

» the "implicit representation” of a heap in an array makes
several operations very fast

add a new node at the end (O(1))

from a node, find its parent (O(1))

swap parent and child (O(1))

a lot of dynamic memory allocation of tree nodes is avoided

the algorithms shown have elegant solutions

11



Generic Collection Implementation




PrintJob Class

public class PrintJob {
private String user;
private int number;

private 1int priority;

public PrintJob (int number, String user, int priority) {
this.number = number;
this.user = user;

this.priority = priority;

public String toString() {

return this.number + " (" + user + "):" + this.priority;

13



Type Parameters (Generics)

» Recall:When constructing an ArrayList, you specify the type
of elements it will contain between < and >.

ArrayList<String> names = new ArraylList<String>();
names.add ("Kona") ;

names.add ("Daisy") ;

» We say that the ArrayList class accepts a type parameter,
or that it is a generic class.

ArrayList<Type> name = new ArrayList<Type> () ;

14



Implementing generics

// a parameterized (generic) class
public class name<Type>

J

» By putting the Type in < >, you are demanding that any
client that constructs your object must supply a type
parameter.

The rest of your class's code can refer to that type by name.

» Exercise: Convert our priority queue classes to use
generics.

15



