
CSE 373
Data Structures and Algorithms

Lecture 13: Priority Queues (Heaps)

Motivating Examples

2

  Bandwidth management: A router is connected to a line with limited
bandwidth. If there is insufficient bandwidth, the router maintains a queue
for incoming data such that the most important data will get forwarded
first as bandwidth becomes available.

  Printing: A shared server has a list of print jobs to print. It wants to print
them in chronological order, but each print job also has a priority, and
higher-priority jobs always print before lower-priority jobs

  Algorithms: We are writing a ghost AI algorithm for Pac-Man. It needs to
search for the best path to find Pac-Man; it will enqueue all possible paths
with priorities (based on guesses about which one will succeed), and try
them in order.

Priority Queue ADT

3

  priority queue: A collection of elements that provides
fast access to the minimum (or maximum) element
  a mix between a queue and a BST

  basic priority queue operations:
  insert: Add an element to the priority queue (priority matters)
  remove (i.e. deleteMin): Removes/returns minimum element

Using PriorityQueues

4

Queue<String> pq = new PriorityQueue<String>();
pq.add("Kona");
pq.add("Daisy");

  implements Queue interface
  PriorityQueue in Java is a concrete class

PriorityQueue<E>() constructs a PriorityQueue that orders the
elements according to their compareTo
(element type must implement Comparable)

add(element) inserts the element into the PriorityQueue

remove() removes and returns the element at the head
of the queue

peek() returns, but does not remove, the element at
the head of the queue

Potential Implementations

5

insert deleteMin

Unsorted list (Array)

Unsorted list (Linked-List)

Sorted list (Array)

Sorted list (Linked-List)

Binary Search Tree

AVL Trees

Potential Implementations

* Assume sorted array has lowest priority value item last

6

insert	
 deleteMin	

Unsorted	
 list	
 (Array)	
 Θ(1)	
 Θ(n)	

Unsorted	
 list	
 (Linked-­‐List)	
 Θ(1)	
 Θ(n)	

Sorted	
 list	
 (Array)	
 Θ(n)	
 Θ(1)*	

Sorted	
 list	
 (Linked-­‐List)	
 Θ(n)	
 Θ(1)	

Binary	
 Search	
 Tree	
 Θ(n)	
 worst	
 Θ(n)	
 worst	

AVL	
 Trees	
 Θ(log	
 n)	
 Θ(log	
 n)	

Heap properties

7

  heap: a tree with the following two properties:
  1. completeness

complete tree: every level is full except possibly the lowest
level, which must be filled from left to right with no leaves to
the right of a missing node (i.e., a node may not have any
children until all of its possible siblings exist)

Heap shape:

Heap properties 2

8

  2. heap ordering
a tree has heap ordering if P <= X for every element X with
parent P
  In other words, in heaps, parents' element values are always smaller

than those of their children
  Implies that minimum element is always the root
  Is every heap a BST? Are any heaps BSTs?

Which are min-heaps?

9

15 30

80 20

10

99 60 40

80 20

10

50 700

85

99 60 40

80 20

10

50 700

85 99 60 40

80 10

20

50 700

85

60 40

80 20

10

99 60 40

80 20

10

wrong! wrong!

wrong!

wrong!

24

7 3

30

10 40

30

80

25 10

48

21

14

10 17

33

 9 18 28

11

22

35 30

50

30

10 20

wrong!

wrong!

Which are max-heaps?

10

Heap height and runtime

11

  height of a complete tree is always log n, because it is always
balanced
  because of this, if we implement a priority queue using a

heap, we can provide the O(log n) runtime required for the
add and remove operations

n-node
complete tree
of height h:
2h ≤ n ≤ 2h+1 – 1
h = ⎣log n⎦

Implementation of a heap

12

  when implementing a complete binary tree, we actually can
"cheat" and just use an array
  index of root = 1 (leave 0 empty for simplicity)
  for any node n at index i,

  index of n.left = 2i
  index of n.right = 2i + 1

  parent index?

Implementing Priority Queue: Binary Heap

13

public interface IntPriorityQueue {

 public void add(int value);

 public boolean isEmtpy();

 public int peek();

 public int remove();

}

public class IntBinaryHeap implements IntPriorityQueue {

 private static final int DEFAULT_CAPACITY = 10;

 private int[] array;

 private int size;

 public IntBinaryHeap () {

 array = new int[DEFAULT_CAPACITY];

 size = 0;

 }

 ...

}

Adding to a heap

14

  when an element is added to a heap, it should be initially
placed as the rightmost leaf (to maintain the
completeness property)
  heap ordering property becomes broken!

99 60 40

80 20

10

50 700

85

65

99 60 40

80 20

10

50 700

85

65 15

Adding to a heap, cont'd.

15

  to restore heap ordering property, the newly added
element must "bubble up” until it reaches its proper place
  bubble up (or "percolate up") by swapping with parent
  how many bubble-ups could be necessary, at most?

99 60 40

80 20

10

50 700

85

65 15

99 20 40

80 15

10

50 700

85

65 60

Adding to a max-heap

16

  same operations, but must bubble up larger values to top

16

5 11

3 18

16

18 11

3 5

18

16 11

3 5

Heap practice problem

17

  Draw the state of the min-heap tree after adding the
following elements to it:

6, 50, 11, 25, 42, 20, 104, 76, 19, 55, 88, 2

