
CSE 373
Data Structures and Algorithms

Lecture 12: Trees IV (AVL Trees)

Problem Cases for AVL insert
1.  LL Case: insertion into left subtree of node's left child
2.  LR Case: insertion into right subtree of node's left child

2

Problem Cases for AVL insert (cont’d)
3.  RL Case: insertion into left subtree of node's right child
4.  RR Case: insertion into right subtree of node's right

child

3

Right	
 rota*on	
 to	
 fix	
 Case	
 1	
 (LL)
  right	
 rota)on	
 (clockwise):	
 le:	
 child	
 becomes	
 parent;	
 original	

parent	
 demoted	
 to	
 right	

4

Le:	
 rota*on	
 to	
 fix	
 Case	
 4	
 (RR)
  le-	
 rota)on	
 (counter-­‐clockwise):	
 right	
 child	
 becomes	
 parent;	

original	
 parent	
 demoted	
 to	
 le:	

5

Left rotation, steps

6

1.  detach right child (70)'s left subtree (60) (don't lose it!)
2.  consider right child (70) be the new parent
3.  attach old parent (50) onto left of new parent (70)
4.  attach old right child (70)'s old left subtree (60) as right

subtree of new left child (50)

Problem: Cases 2, 3

7

  A single right rotation does not fix Case 2!
  Similarly, a single left rotation does not fix Case 3!

Left-right rotation for Case 2

8

  le--­‐right	
 double	
 rota)on:	
 a	
 le:	
 rota*on	
 of	
 the	
 le:	
 child,	

followed	
 by	
 a	
 right	
 rota*on	
 at	
 the	
 parent	

Left-right rotation example

9

Left-right rotation, steps

10

1.  perform left-rotate on left child
2.  perform right-rotate on parent (current node)

Right-left rotation for Case 3

11

  right-­‐le-	
 double	
 rota)on:	
 a	
 right	
 rota*on	
 of	
 the	
 right	
 child,	

followed	
 by	
 a	
 le:	
 rota*on	
 at	
 the	
 parent	

Right-left rotation, steps

12

1.  perform right-rotate on right child
2.  perform left-rotate on parent (current node)

AVL tree practice problem

13

  Draw the AVL tree that would result if the following
numbers were added in this order to an initially empty
tree:
  40, 70, 90, 80, 30, -50, 10, 60, 40, -70, 20, 35, 37, 32, 38, 39

  Then give the following information about the tree:
  size
  height
  balance factor at each node

Implementing AVL add

14

  After normal BST add, update heights from new leaf up
towards root
  If balance factor changes to > +1 or < -1, then use rotation(s)

to rebalance

  Let n be the first unbalanced node found
  Case 1: n has balance factor -2 and n's left child has balance

factor of –1
  fixed by performing right-rotation on n

  Case 2: n has balance factor -2 and n's left child has balance
factor of 1
  fixed by perform left-rotation on n's left child, then right-rotation

on n (left-right double rotation)

AVL add, cont'd

15

  Case 3: n has balance factor 2 and n's right child has balance
factor of –1
  fixed by perform right-rotation on n's right child, then left-

rotation on n (right-left double rotation)

  Case 4: n has balance factor 2 and n's right child has balance
factor of 1
  fixed by performing left-rotation on n

  After rebalancing, continue up the tree updating heights
  What if n's child has balance factor 0?
  What if another imbalance occurs higher up?

AVL add outline
public class TrackingStreeSet extends StreeSet {

 protected StringTreeNode add(StringTreeNode node, String value) {
 // perform StreeSet add (i.e. regular BST add)

 // update node's height

 return node;
 }

 ...

}

public class AVLStreeSet extends TrackingStreeSet {

 protected StringTreeNode add(StringTreeNode node, String value) {
 // perform TrackingStreeSet add and update node's height

 // rebalance the node

 return node;
 }

 protected StringTreeNode rebalance(StringTreeNode node) {
 int bf = balanceFactor(node);
 if (bf < -1) {
 if (balanceFactor(node.left) < 0) { // case 1 (LL insert)
 node = rightRotate(node);
 } else { // case 2 (LR insert)
 node.left = leftRotate(node.left);
 node = rightRotate(node);
 }
 } else if (bf > 1) {
 // take care of symmetric cases
 }
 }
 ...
}

16

Problems for AVL remove

17

  Removal	
 from	
 AVL	
 tree	
 can	
 unbalance	
 the	
 tree	

Right-left rotation on remove

18

AVL remove, cont'd

19

1.  Perform normal BST remove (with replacement of node
to be removed with its successor)

2.  Update heights from successor node location upwards
towards root

  if balance factor changes to +2 or -2, then use rotation(s) to
rebalance

  Are all cases handled?

Additional AVL Remove Cases
  Why is this case not covered by insert?

20

k1	

	
 	
 C	

	
 	
 A	

k2	

	
 	
 B	

Before removing
from subtree C k1	

	
 	
 C	

	
 	
 A	

k2	

	
 	
 B	

After removing
from subtree C

Two Additional AVL Remove Cases
  In these cases, a node (k1 in previous slide) violates

balance condition after removing from one of its subtrees
when its other subtree has a balance factor of 0
  These cases do not occur for insertion: when insertion causes

a tree to have a balance factor of 2 or -2, the child containing
the subtree where the insertion occurred either has a balance
factor of -1 or 1

  Prior code snippet for rebalancing has to be modified to
handle these cases.

21

Fixing AVL Remove Cases
  If deletion from right subtree of node creates imbalance

and left subtree has balance factor of 0 we right rotate
  The fix for symmetric case involves left rotation

22

k1	

	
 	
 C	

	
 	
 A	

k2	

	
 	
 B	

After removing
from subtree C

k1	

	
 	
 C	
 	
 	
 A	

k2	

	
 	
 B	

After right
rotate to fix
imbalance

