
CSE 373
Data Structures and Algorithms

Lecture 9: Set ADT / Trees

Set ADT

2

  set: A collection that does not allow duplicates
  We don't think of a set as having indices or any order

  Basic set operations:
  insert: Add an element to the set (order doesn't matter).
  remove: Remove an element from the set.
  search: Efficiently determine if an element is a member of the set.

set.contains("to") true

set	

"the" "of"

"from"
"to"

"she"
"you"

"him" "why"

"in"

"down"
"by"

"if"

set.contains("be") false

Sets in computer science

3

  Databases:
  Set of records in a table

  Search engines:
  Set of URLs/webpages on the Internet

  Real world examples:
  Set of all products for sale in a store inventory
  Set of friends on Facebook
  Set of email addresses

Using Sets

4

 List<String> list = new ArrayList<String>();
 ...
 Set<Integer> set = new TreeSet<Integer>(); // empty
 Set<String> set2 = new HashSet<String>(list);

  Can construct an empty set, or one based on a given collection

add(value) adds the given value to the set

contains(value) returns true if the given value is found in this set

remove(value) removes the given value from the set

clear() removes all elements of the set

size() returns the number of elements in list

isEmpty() returns true if the set's size is 0

toString() returns a string such as "[3, 42, -7, 15]"

More Set operations

5

addAll(collection) adds all elements from the given collection to this set

containsAll(coll) returns true if this set contains every element from given set

equals(set) returns true if given other set contains the same elements

iterator() returns an object used to examine set's contents

removeAll(coll) removes all elements in the given collection from this set

retainAll(coll) removes elements not found in given collection from this set

toArray() returns an array of the elements in this set

addAll retainAll removeAll

Accessing elements in a Set

6

 for (type name : collection) {
 statements;
 }

  Provides a clean syntax for looping over the elements of a Set,
List, array, or other collection

Set<Double> grades = new TreeSet<Double>();
...

for (double grade : grades) {
 System.out.println("Student grade: " + grade);
}

  needed because sets have no indexes; can't get element i

Sets and ordering

7

  HashSet : elements are stored in an unpredictable order
Set<String> names = new HashSet<String>();
names.add("Jake");
names.add("Robert");
names.add("Marisa");
names.add("Kasey");
System.out.println(names);
// [Kasey, Robert, Jake, Marisa]

  TreeSet : elements are stored in their "natural" sorted
order
Set<String> names = new TreeSet<String>();
...
// [Jake, Kasey, Marisa, Robert]

Set Implementation Runtimes

8

Insert Remove Search

Unsorted
array Θ(n) Θ(n) Θ(n)

Sorted
array Θ(log(n)+n) Θ(log(n) + n) Θ(log(n))

Linked list Θ(n) Θ(n) Θ(n)

Trees

9

  tree: A directed, acyclic structure of linked nodes.
  directed: Has one-way links between nodes.
  acyclic: No path wraps back around to the same node twice.

  binary tree: One where each node has at most two children.

  A binary tree can be defined as either:
  empty (null), or
  a root node that contains:

  data
  a left subtree and a right subtree

  Either (or both) subtrees could be empty.

7 6

3 2

1

5 4

root

Trees in computer science

10

  folders/files on a computer

  family genealogy; organizational charts
  AI: decision trees
  compilers: parse tree

  a = (b + c) * d;

  cell phone T9

d +

* a

=

c b

Terminology

11

  node: an object containing a data value and left/right
children

  root: topmost node of a tree
  leaf: a node that has no children
  branch: any internal node; neither the root nor a leaf

  parent: a node that refers to this one
  child: a node that this node refers to
  sibling: a node with common parent

7 6

3 2

1

5 4

root

StringTreeNode class

12

// A StringTreeNode object is one node in a binary tree of Strings.
public class StringTreeNode {
 public String data; // data stored at this node
 public StringTreeNode left; // reference to left subtree
 public StringTreeNode right; // reference to right subtree

 // Constructs a leaf node with the given data.
 public StringTreeNode(String data) {
 this(data, null, null);
 }

 // Constructs a leaf or branch node with the given data and links.
 public StringTreeNode(String data, StringTreeNode left,
 StringTreeNode right) {

 this.data = data;
 this.left = left;
 this.right = right;
 }
}

Binary search trees

13

  binary search tree ("BST"): a binary tree that is either:
  empty (null), or
  a root node R such that:

  every element of R's left subtree contains data "less than" R's data,
  every element of R's right subtree contains data "greater than" R's,
  R's left and right subtrees are also binary search trees.

  BSTs store their elements in
sorted order, which is helpful
for searching/sorting tasks.

91 60

87 29

55

42 -3

overall root

Exercise

14

  Which of the trees shown are legal binary search trees?

x k

q g

m

e

b 18 10

11 5

8

4

2 7

20

18

42

-7 -1

-5

21.3 8.1

9.6 1.9

7.2

Programming with Binary Trees

15

  Many tree algorithms are recursive
  Process current node, recurse on subtrees
  Base case is usually empty tree (null)

  traversal: An examination of the elements of a tree.
  A pattern used in many tree algorithms and methods

  Common orderings for traversals:
  pre-order: process root node, then its left/right subtrees
  in-order: process left subtree, then root node, then right
  post-order: process left/right subtrees, then root node

Tree Traversal (in order)

16

// Returns a String representation of StringTreeSet with elements in

// their "natural order" (e.g., [Jake, Kasey, Marisa, Robert]).

public String toString() {

 String str = "[" + toString(root);

 if (str.length() > 1) { str = str.substring(0, str.length()-2); }

 return str + "]";

}

// recursive helper; in-order traversal

private String toString(StringTreeNode root) {

 String str = "";

 if (root != null) {

 str += toString(root.left);

 str += root.data + ", ";

 str += toString(root.right);

 }

 return str;

}

