CSE 373
Data Structures and Algorithms

Lecture 7: Sorting

Why Sorting?

» Practical application
People by last name
Countries by population
Search engine results by relevance

» Fundamental to other algorithms

» Different algorithms have different asymptotic and constant-
factor trade-offs

No single ‘best’ sort for all scenarios
Knowing one way to sort just isn’t enough

» Many to approaches to sorting which can be used for other
problems

Problem statement

» There are n comparable elements in an array and we want to
rearrange them to be in increasing order

» Pre:
An array A of data records
A value in each data record

A comparison function

<, =, >, compareTo

» Post:
For each distinct position i and j of A, if i<j then A[i] = A[]]

A has all the same data it started with

Sorting Classification

In memory sorting

Comparison sorting Specialized
Q(N log N) Sorting
O(N?) O(N log N) O(N)

* Bubble Sort * Merge Sort
e Selection Sort * Quick Sort
* Insertion Sort

External
sorting

of tape
accesses

* Simple
External
Merge Sort

Comparison Sorting

Determine order through comparisons on the input data

Bogo sort

» bogo sort: orders a list of values by repetitively shuffling
them and checking if they are sorted

» more specifically:
scan the list, seeing if it is sorted
if not, shuffle the values in the list and repeat

» This sorting algorithm has terrible performance!
Can we deduce its runtime?
What about best case!?

Bogo sort code

public static void bogoSort (int[] a) {
while (!isSorted(a)) {
shuffle(a);

}

// Returns true if array a's elements

// are 1in sorted order.
public static boolean isSorted(int[] a) {
for (int 1 = 0; 1 < a.length - 1; 1i++) {
if (a[i] > ali+l]) {
return false;

return true;

Bogo sort code, helpers

// Shuffles an array of ints by randomly swapping each
// element with an element ahead of it in the array.
public static void shuffle(int[] a) {
for (int 1 = 0; 1 < a.length - 1; 1i++) {
// pick random number in [i+1l, a.length-1] inclusive
int range = (a.length - 1) - (» + 1) + 1;
int j = (int) (Math.random() * range + (1 + 1));
swap (a, 1, J);

}

// Swaps al[i] with al[j].
private static void swap(int[] a, int i, int j) {
if (1 == J)
return;

int temp = afli];
ali] = aljl;
aljl] = temp;

O(n?) Comparison Sorting

Bubble sort

» bubble sort: orders a list of values by repetitively
comparing neighboring elements and swapping their
positions if necessary

» more specifically:

scan the list, exchanging adjacent elements if they are not in
relative order; this bubbles the highest value to the top

scan the list again, bubbling up the second highest value

repeat until all elements have been placed in their proper
order

10

"Bubbling" largest element

» Traverse a collection of elements

Move from the front to the end

"Bubble" the largest value to the end using pair-wise

comparisons and swapping

3

12

101

11

"Bubbling" largest element

» Traverse a collection of elements
Move from the front to the end

"Bubble" the largest value to the end using pair-wise
comparisons and swapping

101 5

12

"Bubbling" largest element

» Traverse a collection of elements
Move from the front to the end

"Bubble" the largest value to the end using pair-wise
comparisons and swapping

42

13

"Bubbling" largest element

» Traverse a collection of elements
Move from the front to the end

"Bubble" the largest value to the end using pair-wise
comparisons and swapping

2 |35 [12 |77 |01 | s

No need to swap

14

"Bubbling" largest element

» Traverse a collection of elements
Move from the front to the end

"Bubble" the largest value to the end using pair-wise
comparisons and swapping

42 35 12 77

15

"Bubbling" largest element

» Traverse a collection of elements

16

Move from the front to the end

"Bubble" the largest value to the end using pair-wise

comparisons and swapping

42

35

12

77

:

Largest value correctly placed

Bubble sort code

public static void bubbleSort (int[] a) {
for (int 1 = 0; 1 < a.length; 1i++) {
for (int 7 = 1; jJ < a.length - 1i; J++) {
// swap adjacent out-of-order elements
it (alj-1] > aljl) A
swap (a, j-1, J)7

17

Bubble sort runtime

» Running time (# comparisons) for input size n:

n-1n-1-i n-—1

1 1=>(n-1-0
i=0 j=1 i=0

n-—1 n-—1 n-—1

— nzl _ 21 _ Ei
i=0 i=0 =0
2 (n—-Dn

2
- O(n?)

number of actual swaps performed depends on the data; out-of-
order data performs many swaps

18

Selection sort

» selection sort: orders a list of values by repetitively
putting a particular value into its final position

» more specifically:
find the smallest value in the list
switch it with the value in the first position
find the next smallest value in the list
switch it with the value in the second position

repeat until all values are in their proper places

19

Selection sort example

3 9 6 1
Scan right starting with 3.
1 is the smallest. Exchange 1 and 3. * *
1 9 6 3
Scan right starting with 9.
2 is the smallest. Exchange 9 and 2. *
1 2 6 3
Scan right starting with 6.
3 is the smallest. Exchange 6 and 3. * *
1 2 3 6
Scan right starting with 6.
6 is the smallest. Exchange 6 and 6. *
1 2 3 6

20

Selection sort example 2

Index

0 1 | 2 | 3 4 | 5 | 6 | 7
vallue 27 | 63 | 1 | 72 | 64 | 58 | 14 | ©
t

1¥pass | 4 1 63 |27 72 | 64 | 58 | 14 | 9
d

2 pasE 1 9 | 27| 72 | 64 | 58 | 14 | 63
rd

=PRSS 1 O |14| 72 | 64 | 58 | 27 | 63

21

Selection sort code

public static voild selectionSort(int[] a) {
for (int 1 = 0; 1 < a.length; 1i++) {
// find index of smallest element

int minIndex = 1i;
for (int J = 1 + 1; j < a.length; Jj++) {
1f (al[j] < a[minIndex]) {
minIndex = 7j;

// swap smallest element with ali]
swap (a, 1, minlIndex);

22

Selection sort runtime

» Running time for input size n:
In practice, a bit faster than bubble sort. Why!?

n-1 n-1 n-1

> N¥1=>mn-1-G+D+D
i=0 j=i+l i=0
n-1
= >Yn-1-1)
i1=0
n-1 n-1 n-1
=nyl— > >i— >1
1=0 =0 1=0
, (n-Dn
- 2
= @(nz)

23

Insertion sort

» insertion sort: orders a list of values by repetitively
inserting a particular value into a sorted subset of the list

» more specifically:

24

consider the first item to be a sorted sublist of length |

insert the second item into the sorted sublist, shifting the first
item if needed

insert the third item into the sorted sublist, shifting the other
items as needed

repeat until all values have been inserted into their proper
positions

Insertion sort

» Simple sorting algorithm.
n-1 passes over the array

At the end of pass i, the elements that occupied A[0]...A[i]
originally are still in those spots and in sorted order.

2 | 15 I 8 | 1 11710 12| 5
o 1 2 3 4 5 6 7
after
bass 2 2 | 8 | 15 I 1 | 17 | 10| 12 | 5
o 1 2 3 4 5 6 7
31653 1 | 2 | 8 | 15 I 17 | 10 | 12 | 5
o 1 2 3 4 5 6 7

25

Insertion sort example

3 is sorted.
Shift nothing. Insert 9.

3 and 9 are sorted.
Shift 9 to the right. Insert 6.

3, 6, and 9 are sorted.

Shift 9, 6, and 3 to the right. Insert 1.

1, 3, 6, and 9 are sorted.

Shift 9, 6, and 3 to the right. Insert 2.

26

3 9 6 1 2
A

3 o —> 6 1 2
A

3—» 6—> 9 —> 1 2

4 |

1 3—>6—> 9—> 2
4 |

Insertion sort code

public static void insertionSort(int[] a) {
for (int 1 = 1; 1 < a.length; 1i++) {
int temp = ali];

// slide elements down to make room for afi]

int 3 = 1i;

while (3 > 0 && a[j - 1] > temp) {
aljl = aljy - 117
J—=7

}

aljl] = temp;

27

Insertion sort runtime

» worst case: reverse-ordered elements in array.

n-1
-1
Ei=1+2+3+...+(n—1)= (r > n

i=1

= O(n”)
» best case:array is in sorted ascending order.

n-1
Y1=n-1=06(n)
=1

» average case: each element is about halfway in order.

2% 1(1+2+3...+(n_1))= (n ;1),1

28

Comparing sorts
» We've seen "simple" sorting algorithms so far, such as
selection sort and insertion sort.

» They all use nested loops and perform approximately n?
comparisons

» They are relatively inefficient

29

Sorting practice problem

» Consider the following array of int values.

30

[22, 11,34,-5, 3,40, 9, 16, 6]

() Write the contents of the array after 3 passes of the
outermost loop of bubble sort.

(b) Write the contents of the array after 5 passes of the
outermost loop of insertion sort.

(c) Write the contents of the array after 4 passes of the
outermost loop of selection sort.

