
CSE 373
Data Structures and Algorithms

Lecture 7: Sorting

Why Sorting?

2

  Practical application
  People by last name
  Countries by population
  Search engine results by relevance

  Fundamental to other algorithms

  Different algorithms have different asymptotic and constant-
factor trade-offs
  No single ‘best’ sort for all scenarios
  Knowing one way to sort just isn’t enough

  Many to approaches to sorting which can be used for other
problems

Problem statement

3

  There are n comparable elements in an array and we want to
rearrange them to be in increasing order

  Pre:
  An array A of data records
  A value in each data record
  A comparison function

  <, =, >, compareTo

  Post:
  For each distinct position i and j of A, if i<j then A[i] ≤ A[j]
  A has all the same data it started with

Sorting Classification

4

In memory sorting External
sorting

Comparison sorting
Ω(N log N)

Specialized
Sorting

O(N2) O(N log N) O(N)
of tape
accesses

•  Bubble Sort
•  Selection Sort
•  Insertion Sort
•  Shell Sort

•  Merge Sort
•  Quick Sort
•  Heap Sort

•  Bucket Sort
•  Radix Sort

•  Simple
External
Merge Sort
•  Variations

Comparison Sorting

Determine order through comparisons on the input data

Bogo sort

6

  bogo sort: orders a list of values by repetitively shuffling
them and checking if they are sorted

  more specifically:
  scan the list, seeing if it is sorted
  if not, shuffle the values in the list and repeat

  This sorting algorithm has terrible performance!
  Can we deduce its runtime?
  What about best case?

Bogo sort code

7

public static void bogoSort(int[] a) {
 while (!isSorted(a)) {
 shuffle(a);
 }
}

// Returns true if array a's elements
// are in sorted order.
public static boolean isSorted(int[] a) {
 for (int i = 0; i < a.length - 1; i++) {
 if (a[i] > a[i+1]) {
 return false;
 }
 }

 return true;
}

Bogo sort code, helpers

8

// Shuffles an array of ints by randomly swapping each
// element with an element ahead of it in the array.
public static void shuffle(int[] a) {
 for (int i = 0; i < a.length - 1; i++) {
 // pick random number in [i+1, a.length-1] inclusive
 int range = (a.length – 1) - (i + 1) + 1;
 int j = (int)(Math.random() * range + (i + 1));
 swap(a, i, j);
 }
}

// Swaps a[i] with a[j].
private static void swap(int[] a, int i, int j) {
 if (i == j)
 return;

 int temp = a[i];
 a[i] = a[j];
 a[j] = temp;
}

O(n2) Comparison Sorting

Bubble sort

10

  bubble sort: orders a list of values by repetitively
comparing neighboring elements and swapping their
positions if necessary

  more specifically:
  scan the list, exchanging adjacent elements if they are not in

relative order; this bubbles the highest value to the top
  scan the list again, bubbling up the second highest value
  repeat until all elements have been placed in their proper

order

"Bubbling" largest element

11

  Traverse a collection of elements
  Move from the front to the end
  "Bubble" the largest value to the end using pair-wise

comparisons and swapping

5 12 35 42 77 101

0 1 2 3 4 5
Swap 42 77

"Bubbling" largest element

12

  Traverse a collection of elements
  Move from the front to the end
  "Bubble" the largest value to the end using pair-wise

comparisons and swapping

5 12 35 77 42 101

0 1 2 3 4 5
Swap 35 77

"Bubbling" largest element

13

  Traverse a collection of elements
  Move from the front to the end
  "Bubble" the largest value to the end using pair-wise

comparisons and swapping

5 12 77 35 42 101

0 1 2 3 4 5
Swap 12 77

"Bubbling" largest element

14

  Traverse a collection of elements
  Move from the front to the end
  "Bubble" the largest value to the end using pair-wise

comparisons and swapping

5 77 12 35 42 101

0 1 2 3 4 5

No need to swap

"Bubbling" largest element

15

  Traverse a collection of elements
  Move from the front to the end
  "Bubble" the largest value to the end using pair-wise

comparisons and swapping

5 77 12 35 42 101

0 1 2 3 4 5

Swap 5 101

"Bubbling" largest element

16

  Traverse a collection of elements
  Move from the front to the end
  "Bubble" the largest value to the end using pair-wise

comparisons and swapping

77 12 35 42 5

0 1 2 3 4 5

101

Largest value correctly placed

Bubble sort code

17

public static void bubbleSort(int[] a) {
 for (int i = 0; i < a.length; i++) {
 for (int j = 1; j < a.length - i; j++) {
 // swap adjacent out-of-order elements
 if (a[j-1] > a[j]) {
 swap(a, j-1, j);
 }
 }
 }
}

Bubble sort runtime

18

  Running time (# comparisons) for input size n:

  number of actual swaps performed depends on the data; out-of-
order data performs many swaps

€

1
j=1

n−1− i

∑
i=0

n−1

∑ = (n −1− i)
i=0

n−1

∑

= n 1
i=0

n−1

∑ − 1
i=0

n−1

∑ − i
i=0

n−1

∑

= n2 − n − (n −1)n
2

=Θ(n2)

Selection sort

19

  selection sort: orders a list of values by repetitively
putting a particular value into its final position

  more specifically:
  find the smallest value in the list
  switch it with the value in the first position
  find the next smallest value in the list
  switch it with the value in the second position
  repeat until all values are in their proper places

Selection sort example

20

Index
0 1 2 3 4 5 6 7

Value
27 63 1 72 64 58 14 9

1st pass
1 63 27 72 64 58 14 9

2nd pass
1 9 27 72 64 58 14 63

3rd pass
1 9 14 72 64 58 27 63

…

Selection sort example 2

21

Selection sort code

22

public static void selectionSort(int[] a) {
 for (int i = 0; i < a.length; i++) {
 // find index of smallest element
 int minIndex = i;
 for (int j = i + 1; j < a.length; j++) {
 if (a[j] < a[minIndex]) {
 minIndex = j;
 }
 }

 // swap smallest element with a[i]
 swap(a, i, minIndex);
 }
}

Selection sort runtime

23

  Running time for input size n:
  In practice, a bit faster than bubble sort. Why?

€

1
j= i+1

n−1

∑
i=0

n−1

∑ = (n −1− (i +1) +1)
i=0

n−1

∑

= (n − i −1)
i=0

n−1

∑

= n 1
i=0

n−1

∑ − i
i=0

n−1

∑ − 1
i=0

n−1

∑

= n2 − (n −1)n
2

− n

=Θ(n2)

Insertion sort

24

  insertion sort: orders a list of values by repetitively
inserting a particular value into a sorted subset of the list

  more specifically:
  consider the first item to be a sorted sublist of length 1
  insert the second item into the sorted sublist, shifting the first

item if needed
  insert the third item into the sorted sublist, shifting the other

items as needed
  repeat until all values have been inserted into their proper

positions

Insertion sort

25

  Simple sorting algorithm.
  n-1 passes over the array
  At the end of pass i, the elements that occupied A[0]…A[i]

originally are still in those spots and in sorted order.

2 8 15 1 17 10 12 5

0 1 2 3 4 5 6 7

1 2 8 15 17 10 12 5

0 1 2 3 4 5 6 7

after
pass 2

after
pass 3

2 15 8 1 17 10 12 5

0 1 2 3 4 5 6 7

Insertion sort example

26

Insertion sort code

27

public static void insertionSort(int[] a) {
 for (int i = 1; i < a.length; i++) {
 int temp = a[i];

 // slide elements down to make room for a[i]
 int j = i;
 while (j > 0 && a[j - 1] > temp) {
 a[j] = a[j - 1];
 j--;
 }

 a[j] = temp;
 }
}

Insertion sort runtime

28

  worst case: reverse-ordered elements in array.

  best case: array is in sorted ascending order.

  average case: each element is about halfway in order.
€

i
i=1

n−1

∑ =1+ 2 + 3+ ...+ (n −1) =
(n −1)n
2

=Θ(n2)

€

1
i=1

n−1

∑ = n −1 =Θ(n)

€

i
2i=1

n−1

∑ =
1
2
(1+ 2 + 3...+ (n −1)) =

(n −1)n
4

=Θ(n2)

Comparing sorts

29

  We've seen "simple" sorting algorithms so far, such as
selection sort and insertion sort.

  They all use nested loops and perform approximately n2
comparisons

  They are relatively inefficient

Sorting practice problem

30

  Consider the following array of int values.

  [22, 11, 34, -5, 3, 40, 9, 16, 6]

  (a) Write the contents of the array after 3 passes of the
outermost loop of bubble sort.

  (b) Write the contents of the array after 5 passes of the
outermost loop of insertion sort.

  (c) Write the contents of the array after 4 passes of the
outermost loop of selection sort.

