
CSE 373
Data Structures and Algorithms

Lecture 7: Sorting

Why Sorting?

2

  Practical application
  People by last name
  Countries by population
  Search engine results by relevance

  Fundamental to other algorithms

  Different algorithms have different asymptotic and constant-
factor trade-offs
  No single ‘best’ sort for all scenarios
  Knowing one way to sort just isn’t enough

  Many to approaches to sorting which can be used for other
problems

Problem statement

3

  There are n comparable elements in an array and we want to
rearrange them to be in increasing order

  Pre:
  An array A of data records
  A value in each data record
  A comparison function

  <, =, >, compareTo

  Post:
  For each distinct position i and j of A, if i<j then A[i] ≤ A[j]
  A has all the same data it started with

Sorting Classification

4

In memory sorting External
sorting

Comparison sorting
Ω(N log N)

Specialized
Sorting

O(N2) O(N log N) O(N)
of tape
accesses

•  Bubble Sort
•  Selection Sort
•  Insertion Sort
•  Shell Sort

•  Merge Sort
•  Quick Sort
•  Heap Sort

•  Bucket Sort
•  Radix Sort

•  Simple
External
Merge Sort
•  Variations

Comparison Sorting

Determine order through comparisons on the input data

Bogo sort

6

  bogo sort: orders a list of values by repetitively shuffling
them and checking if they are sorted

  more specifically:
  scan the list, seeing if it is sorted
  if not, shuffle the values in the list and repeat

  This sorting algorithm has terrible performance!
  Can we deduce its runtime?
  What about best case?

Bogo sort code

7

public static void bogoSort(int[] a) {
 while (!isSorted(a)) {
 shuffle(a);
 }
}

// Returns true if array a's elements
// are in sorted order.
public static boolean isSorted(int[] a) {
 for (int i = 0; i < a.length - 1; i++) {
 if (a[i] > a[i+1]) {
 return false;
 }
 }

 return true;
}

Bogo sort code, helpers

8

// Shuffles an array of ints by randomly swapping each
// element with an element ahead of it in the array.
public static void shuffle(int[] a) {
 for (int i = 0; i < a.length - 1; i++) {
 // pick random number in [i+1, a.length-1] inclusive
 int range = (a.length – 1) - (i + 1) + 1;
 int j = (int)(Math.random() * range + (i + 1));
 swap(a, i, j);
 }
}

// Swaps a[i] with a[j].
private static void swap(int[] a, int i, int j) {
 if (i == j)
 return;

 int temp = a[i];
 a[i] = a[j];
 a[j] = temp;
}

O(n2) Comparison Sorting

Bubble sort

10

  bubble sort: orders a list of values by repetitively
comparing neighboring elements and swapping their
positions if necessary

  more specifically:
  scan the list, exchanging adjacent elements if they are not in

relative order; this bubbles the highest value to the top
  scan the list again, bubbling up the second highest value
  repeat until all elements have been placed in their proper

order

"Bubbling" largest element

11

  Traverse a collection of elements
  Move from the front to the end
  "Bubble" the largest value to the end using pair-wise

comparisons and swapping

5 12 35 42 77 101

0 1 2 3 4 5
Swap 42 77

"Bubbling" largest element

12

  Traverse a collection of elements
  Move from the front to the end
  "Bubble" the largest value to the end using pair-wise

comparisons and swapping

5 12 35 77 42 101

0 1 2 3 4 5
Swap 35 77

"Bubbling" largest element

13

  Traverse a collection of elements
  Move from the front to the end
  "Bubble" the largest value to the end using pair-wise

comparisons and swapping

5 12 77 35 42 101

0 1 2 3 4 5
Swap 12 77

"Bubbling" largest element

14

  Traverse a collection of elements
  Move from the front to the end
  "Bubble" the largest value to the end using pair-wise

comparisons and swapping

5 77 12 35 42 101

0 1 2 3 4 5

No need to swap

"Bubbling" largest element

15

  Traverse a collection of elements
  Move from the front to the end
  "Bubble" the largest value to the end using pair-wise

comparisons and swapping

5 77 12 35 42 101

0 1 2 3 4 5

Swap 5 101

"Bubbling" largest element

16

  Traverse a collection of elements
  Move from the front to the end
  "Bubble" the largest value to the end using pair-wise

comparisons and swapping

77 12 35 42 5

0 1 2 3 4 5

101

Largest value correctly placed

Bubble sort code

17

public static void bubbleSort(int[] a) {
 for (int i = 0; i < a.length; i++) {
 for (int j = 1; j < a.length - i; j++) {
 // swap adjacent out-of-order elements
 if (a[j-1] > a[j]) {
 swap(a, j-1, j);
 }
 }
 }
}

Bubble sort runtime

18

  Running time (# comparisons) for input size n:

  number of actual swaps performed depends on the data; out-of-
order data performs many swaps

€

1
j=1

n−1− i

∑
i=0

n−1

∑ = (n −1− i)
i=0

n−1

∑

= n 1
i=0

n−1

∑ − 1
i=0

n−1

∑ − i
i=0

n−1

∑

= n2 − n − (n −1)n
2

=Θ(n2)

Selection sort

19

  selection sort: orders a list of values by repetitively
putting a particular value into its final position

  more specifically:
  find the smallest value in the list
  switch it with the value in the first position
  find the next smallest value in the list
  switch it with the value in the second position
  repeat until all values are in their proper places

Selection sort example

20

Index
0 1 2 3 4 5 6 7

Value
27 63 1 72 64 58 14 9

1st pass
1 63 27 72 64 58 14 9

2nd pass
1 9 27 72 64 58 14 63

3rd pass
1 9 14 72 64 58 27 63

…

Selection sort example 2

21

Selection sort code

22

public static void selectionSort(int[] a) {
 for (int i = 0; i < a.length; i++) {
 // find index of smallest element
 int minIndex = i;
 for (int j = i + 1; j < a.length; j++) {
 if (a[j] < a[minIndex]) {
 minIndex = j;
 }
 }

 // swap smallest element with a[i]
 swap(a, i, minIndex);
 }
}

Selection sort runtime

23

  Running time for input size n:
  In practice, a bit faster than bubble sort. Why?

€

1
j= i+1

n−1

∑
i=0

n−1

∑ = (n −1− (i +1) +1)
i=0

n−1

∑

= (n − i −1)
i=0

n−1

∑

= n 1
i=0

n−1

∑ − i
i=0

n−1

∑ − 1
i=0

n−1

∑

= n2 − (n −1)n
2

− n

=Θ(n2)

Insertion sort

24

  insertion sort: orders a list of values by repetitively
inserting a particular value into a sorted subset of the list

  more specifically:
  consider the first item to be a sorted sublist of length 1
  insert the second item into the sorted sublist, shifting the first

item if needed
  insert the third item into the sorted sublist, shifting the other

items as needed
  repeat until all values have been inserted into their proper

positions

Insertion sort

25

  Simple sorting algorithm.
  n-1 passes over the array
  At the end of pass i, the elements that occupied A[0]…A[i]

originally are still in those spots and in sorted order.

2 8 15 1 17 10 12 5

0 1 2 3 4 5 6 7

1 2 8 15 17 10 12 5

0 1 2 3 4 5 6 7

after
pass 2

after
pass 3

2 15 8 1 17 10 12 5

0 1 2 3 4 5 6 7

Insertion sort example

26

Insertion sort code

27

public static void insertionSort(int[] a) {
 for (int i = 1; i < a.length; i++) {
 int temp = a[i];

 // slide elements down to make room for a[i]
 int j = i;
 while (j > 0 && a[j - 1] > temp) {
 a[j] = a[j - 1];
 j--;
 }

 a[j] = temp;
 }
}

Insertion sort runtime

28

  worst case: reverse-ordered elements in array.

  best case: array is in sorted ascending order.

  average case: each element is about halfway in order.
€

i
i=1

n−1

∑ =1+ 2 + 3+ ...+ (n −1) =
(n −1)n
2

=Θ(n2)

€

1
i=1

n−1

∑ = n −1 =Θ(n)

€

i
2i=1

n−1

∑ =
1
2
(1+ 2 + 3...+ (n −1)) =

(n −1)n
4

=Θ(n2)

Comparing sorts

29

  We've seen "simple" sorting algorithms so far, such as
selection sort and insertion sort.

  They all use nested loops and perform approximately n2
comparisons

  They are relatively inefficient

Sorting practice problem

30

  Consider the following array of int values.

  [22, 11, 34, -5, 3, 40, 9, 16, 6]

  (a) Write the contents of the array after 3 passes of the
outermost loop of bubble sort.

  (b) Write the contents of the array after 5 passes of the
outermost loop of insertion sort.

  (c) Write the contents of the array after 4 passes of the
outermost loop of selection sort.

