CSE 373
Data Structures and Algorithms

Lecture 6: Searching / Running times in practice

Searching and recursion

» Problem: Given a sorted array of integers and an integer i,
find the index of any occurrence of i if it appears in the
array. If not, return -1.

We could solve this problem using a standard iterative search;
starting at the beginning, and looking at each element until we
find i

What is the runtime of an iterative search?

» Since the array is sorted, we can do better.

Binary search algorithm

» Algorithm idea: Start in the middle, and only search the
portions of the array that might contain the element i.
Eliminate half of the array from consideration at each
step.

Can be written iteratively, but is harder to get right

» Called binary search because it chops the area to
examine in half each time

Implemented in Java as Arrays.binarySearch in java.util package

Binary search example

1=16

A o1 A W N = O

16

20

37

38

43

min

mid (too big!)

max

Binary search example

1=16

A o1 A W N = O

4

R

7

16

20

37

38

43

min
mid (too small!)

max

Binary search example

1=16

A o1 A W N = O

20

37

38

43

min, mid, max (found it!)

Binary search pseudocode

binary search array a for value i:
if all elements have been searched,
result is - 1.
examine middle element a[mid].
if a[mid] equals i,
result is mid.
if a[mid] is greater than |,
binary search left half of a for i.
if a[mid] is less than i,
binary search right half of a for i.

Divide-and-conquer

» divide-and-conquer algorithm: a means for solving a
problem that first separates the main problem into | or
more smaller problems, then solves each of the smaller

problems, then uses those sub-solutions to solve the
original problem

|: "divide" the problem up into pieces
2: "conquer” each smaller piece

3: (if necessary) combine the pieces at the end to produce the
overall solution

binary search is one such algorithm

Runtime of binary search

» How do we analyze the runtime of binary search and
recursive functions in general?

» Binary search either exits immediately,
when input size <= | or value found {base case),

or executes itself on 1/2 as large an input (rec. case)
T(l) =
T(2) ='Ic'(l) + c
T4)=T(2) +c
T(8)=TH#4) +c

T(n) =T(n/2) +c

» How many times does this division in half take place!?

For more rigorous proof, lookup “recurrence relation” and
“Master theorem”

Master Theorem (for reference only)

» A recurrence written in the form
T(n) =a*T(n/b) + f(n)

(where f(n) is a function that is O(n*) for some power k)
has a solution such that

O(nlogb a), a> bk
T(n) =O(n*logn),a =b"
on"), a<b"

» This form of recurrence is very common for divide-and-
conquer algorithms

10

Runtime (for reference only)

» Binary search is of the correct format:
T(n) = a *T(n / b) + f(n)

T(n) =T(n/2) + c

a=1,b=2
f(n) = c=O(l) = O(nY) ... therefore k = 0

» a = bk
| =20 therefore:
T(n) = O(n® log n) = O(log n)

11

