CSE 373

Data Structures and Algorithms

Lecture 6: Searching / Running times in practice

Searching and recursion

- Problem: Given a sorted array of integers and an integer i, find the index of any occurrence of i if it appears in the array. If not, return -I.
- We could solve this problem using a standard iterative search; starting at the beginning, and looking at each element until we find i
- What is the runtime of an iterative search?
- Since the array is sorted, we can do better.

Binary search algorithm

- Algorithm idea: Start in the middle, and only search the portions of the array that might contain the element i. Eliminate half of the array from consideration at each step.
- Can be written iteratively, but is harder to get right
- Called binary search because it chops the area to examine in half each time
- Implemented in Java as Arrays.binarySearch in java.util package

Binary search example

Binary search example

$$
i=16
$$

0	4	min
1	7	mid (too small!)
2	16	max
3	20	
4	37	
5	38	
6	43	

Binary search example

$$
i=16
$$

Binary search pseudocode

binary search array a for value i :
if all elements have been searched, result is -1 .
examine middle element $a[$ mid].
if a[mid] equals i, result is mid.
if $a[m i d]$ is greater than i, binary search left half of a for i.
if $a[$ mid $]$ is less than i, binary search right half of a for i.

Divide-and-conquer

- divide-and-conquer algorithm: a means for solving a problem that first separates the main problem into I or more smaller problems, then solves each of the smaller problems, then uses those sub-solutions to solve the original problem
» I: "divide" the problem up into pieces
- 2: "conquer" each smaller piece
- 3: (if necessary) combine the pieces at the end to produce the overall solution
- binary search is one such algorithm

Runtime of binary search

- How do we analyze the runtime of binary search and recursive functions in general?
- Binary search either exits immediately, when input size <= I or value found (base case), or executes itself on I/2 as large an input (rec. case)

```
T(I) = c
* T(2) =T(I) +c
> T(4) =T(2) +c
> T(8) =T(4) + c
* T(n) =T(n/2) +c
```

- How many times does this division in half take place? " For more rigorous proof, lookup "recurrence relation" and "Master theorem"

Master Theorem (for reference only)

- A recurrence written in the form

$$
T(n)=a * T(n / b)+f(n)
$$

(where $f(n)$ is a function that is $O\left(n^{k}\right)$ for some power k) has a solution such that

$$
\begin{array}{r}
O\left(n^{\log _{b} a}\right), \quad a>b^{k} \\
T(n)=O\left(n^{k} \log n\right), a=b^{k} \\
O\left(n^{k}\right), \quad a<b^{k}
\end{array}
$$

- This form of recurrence is very common for divide-andconquer algorithms

Runtime (for reference only)

- Binary search is of the correct format:

$$
\mathrm{T}(n)=a * \mathrm{~T}(n / \mathrm{b})+\mathrm{f}(n)
$$

$$
T(n)=T(n / 2)+c
$$

$$
a=1, b=2
$$

$$
\mathrm{f}(\mathrm{n})=\mathrm{c}=\mathrm{O}(\mathrm{I})=\mathrm{O}\left(n^{0}\right) \ldots \text { therefore } k=0
$$

- $a=b^{k}$
$1=2^{0}$, therefore:
$\mathrm{T}(\mathrm{n})=\mathrm{O}\left(\mathrm{n}^{0} \log \mathrm{n}\right)=\mathbf{O}(\log \mathrm{n})$

