
CSE 373
Data Structures and Algorithms

Lecture 6: Searching / Running times in practice

Searching and recursion
  Problem: Given a sorted array of integers and an integer i,

find the index of any occurrence of i if it appears in the
array. If not, return -1.
  We could solve this problem using a standard iterative search;

starting at the beginning, and looking at each element until we
find i

  What is the runtime of an iterative search?

  Since the array is sorted, we can do better.

2

Binary search algorithm

3

  Algorithm idea: Start in the middle, and only search the
portions of the array that might contain the element i.
Eliminate half of the array from consideration at each
step.
  Can be written iteratively, but is harder to get right

  Called binary search because it chops the area to
examine in half each time
  Implemented in Java as Arrays.binarySearch in java.util package

4

7

16

20

37

38

43

0

1

2

3

4

5

6

min	

mid	
 (too	
 big!)	

max	

i	
 =	
 16	

Binary search example

4

4

7

16

20

37

38

43

0

1

2

3

4

5

6

min	

mid	
 (too	
 small!)	

max	

i	
 =	
 16	

Binary search example

5

4

7

16

20

37

38

43

0

1

2

3

4

5

6

min,	
 mid,	
 max	
 (found	
 it!)	

i	
 =	
 16	

Binary search example

6

Binary search pseudocode

7

binary search array a for value i:
 if all elements have been searched,
 result is -1.
 examine middle element a[mid].
 if a[mid] equals i,
 result is mid.
 if a[mid] is greater than i,
 binary search left half of a for i.
 if a[mid] is less than i,
 binary search right half of a for i.

Divide-and-conquer

8

  divide-and-conquer algorithm: a means for solving a
problem that first separates the main problem into 1 or
more smaller problems, then solves each of the smaller
problems, then uses those sub-solutions to solve the
original problem
  1: "divide" the problem up into pieces
  2: "conquer" each smaller piece
  3: (if necessary) combine the pieces at the end to produce the

overall solution

  binary search is one such algorithm

Runtime of binary search

9

  How do we analyze the runtime of binary search and
recursive functions in general?

  Binary search either exits immediately,
when input size <= 1 or value found (base case),
or executes itself on 1/2 as large an input (rec. case)
  T(1) = c
  T(2) = T(1) + c
  T(4) = T(2) + c
  T(8) = T(4) + c
  ...
  T(n) = T(n/2) + c

  How many times does this division in half take place?
  For more rigorous proof, lookup “recurrence relation” and

“Master theorem”

Master Theorem (for reference only)
  A recurrence written in the form

 T(n) = a * T(n / b) + f(n)

 (where f(n) is a function that is O(nk) for some power k)
 has a solution such that

  This form of recurrence is very common for divide-and-
conquer algorithms

10
€

T(n) =

O(n logb a),
O(nk logn)
O(nk),

,
a > bk

a = bk

a < bk

Runtime (for reference only)
  Binary search is of the correct format:

 T(n) = a * T(n / b) + f(n)

T(n) = T(n/2) + c

a = 1, b = 2
f(n) = c = O(1) = O(n0) ... therefore k = 0

  a = bk
 1 = 20, therefore:
T(n) = O(n0 log n) = O(log n)

11

