
CSE 373 
Data Structures and Algorithms 

Lecture 6: Searching / Running times in practice 



Searching and recursion 
  Problem: Given a sorted array of integers and an integer i, 

find the index of any occurrence of i if it appears in the 
array.  If not, return -1. 
  We could solve this problem using a standard iterative search; 

starting at the beginning, and looking at each element until we 
find i 

  What is the runtime of an iterative search? 

  Since the array is sorted, we can do better. 

2 



Binary search algorithm 

3 

  Algorithm idea: Start in the middle, and only search the 
portions of the array that might contain the element i.  
Eliminate half of the array from consideration at each 
step. 
  Can be written iteratively, but is harder to get right 

  Called binary search because it chops the area to 
examine in half each time 
  Implemented in Java as Arrays.binarySearch in java.util package 



4 

7 

16 

20 

37 

38 

43 

0 

1 

2 

3 

4 

5 

6 

min	  

mid	  (too	  big!)	  

max	  

i	  =	  16	  

Binary search example 

4 



4 

7 

16 

20 

37 

38 

43 

0 

1 

2 

3 

4 

5 

6 

min	  

mid	  (too	  small!)	  

max	  

i	  =	  16	  

Binary search example 

5 



4 

7 

16 

20 

37 

38 

43 

0 

1 

2 

3 

4 

5 

6 

min,	  mid,	  max	  (found	  it!)	  

i	  =	  16	  

Binary search example 

6 



Binary search pseudocode 

7 

binary search array a for value i: 
    if all elements have been searched, 
        result is -1. 
    examine middle element a[mid]. 
    if a[mid] equals i, 
        result is mid. 
    if a[mid] is greater than i, 
        binary search left half of a for i. 
    if a[mid] is less than i, 
        binary search right half of a for i. 



Divide-and-conquer 

8 

  divide-and-conquer algorithm: a means for solving a 
problem that first separates the main problem into 1 or 
more smaller problems, then solves each of the smaller 
problems, then uses those sub-solutions to solve the 
original problem 
  1: "divide" the problem up into pieces 
  2: "conquer" each smaller piece 
  3: (if necessary) combine the pieces at the end to produce the 

overall solution 

  binary search is one such algorithm 



Runtime of binary search 

9 

  How do we analyze the runtime of binary search and 
recursive functions in general? 

  Binary search either exits immediately,  
when input size <= 1 or value found (base case), 
or executes itself on 1/2 as large an input (rec. case) 
  T(1) = c 
  T(2) = T(1) + c 
  T(4) = T(2) + c 
  T(8) = T(4) + c 
  ... 
  T(n) = T(n/2) + c 

  How many times does this division in half take place? 
  For more rigorous proof, lookup “recurrence relation” and 

“Master theorem” 



Master Theorem (for reference only) 
  A recurrence written in the form 

 T(n) = a * T(n / b) + f(n) 

 (where f(n) is a function that is O(nk) for some power k) 
 has a solution such that 

  This form of recurrence is very common for divide-and-
conquer algorithms 

10 
€ 

T(n) =

O(n logb a ),
O(nk logn)
O(nk ),

,
a > bk

a = bk

a < bk



Runtime (for reference only) 
  Binary search is of the correct format: 

 T(n) = a * T(n / b) + f(n) 

T(n) = T(n/2) + c 

a = 1, b = 2 
f(n) = c = O(1) = O(n0) ... therefore k = 0 

  a = bk 
 1 = 20, therefore: 
T(n) = O(n0 log n) = O(log n) 

11 


