
CSE 373 
Data Structures and Algorithms 

Lecture 5: Math Review/Asymptotic Analysis III 



Series of Constants 
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  Sum of constants 
(when the body of the series doesn't contain the counter 
variable such as i) 

  Example: 



Splitting Series 
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For any constant k, 
  splitting a sum with addition 

  moving out a constant multiple 



 Series of Powers 
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  Sum of powers of 2 

1 + 2 + 4 + 8 + 16 + 32 = 64 - 1 = 63 
think about binary representation of numbers: 
    111111 (63) 
  +         1 (1) 
  1000000 (64) 

(and now a crash course on binary numbers…) 



More Series Identities 
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  Sum from a through N inclusive 
(when the series doesn't start at 1) 

  Is there an intuition for this identity? 

  Can apply same idea if you want the split series to start 
from 0 



Series Practice Problems 
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  Give a closed form expression for the following 
summation. 
  A closed form expression is one without the Σ or "…". 

  Give a closed form expression for the following 
summation. 



Efficiency examples 6 (revisited) 
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int sum = 0; 
for (int i = 1; i <= n; i++) { 

    for (int j = 1; j <= i / 2; j += 2) { 
        sum++; 
    } 
} 

  Compute the value of the variable sum after the following 
code fragment, as a closed-form expression in terms of input 
size n. 
  Ignore small errors caused by i not being evenly divisible by 2 and 

4.  



Growth Rate Terminology (recap) 

8 

  f(n) = O(g(N)) 
  g(n) is an upper bound on f(n) 
  f(n) grows no faster than g(n) 

  f(n) = Ω(g(N)) 
  g(N) is a lower bound on f(n) 
  f(n) grows at least as fast as g(N) 

  f(n) = Θ(g(N)) 
  f(n) grows at the same rate as g(N) 



Facts About Big-Oh 
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  If T1(N) = O(f(N)) and T2(N) = O(g(N)), then 
  T1(N) + T2(N) = O(f(N) + g(N)) 
  T1(N) * T2(N) = O(f(N) * g(N)) 

  If T(N) is a polynomial of degree k, then: 
  T(N) = Θ(Nk) 
  Example: 17n3 + 2n2 + 4n + 1 = Θ(n3) 

  logk N = O(N), for any constant k (for us,  k will generally be 1) 



Complexity classes 
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  complexity class: A category of algorithm efficiency based on 
the algorithm's relationship to the input size N. 

Class Big-Oh If you double N, ... Example 
constant O(1) unchanged 10ms 
logarithmic O(log2 N) increases slightly 175ms 
linear O(N) doubles 3.2 sec 
log-linear O(N log2 N) slightly more than doubles 6 sec 
quadratic O(N2) quadruples 1 min 42 sec 

cubic O(N3) multiplies by 8 55 min 

... ... ... ... 

exponential O(2N) multiplies drastically 5 * 1061 years 



Complexity cases 
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  Worst-case 
  “most challenging” input of size n 

  Best-case 
  “easiest” input of size n 

  Average-case 
  random inputs of size n 

  Amortized 
  m “most challenging” consecutive inputs of size n, divided by m 



Bounds vs. Cases 
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Two orthogonal axes: 

  Bound 
  Upper bound (O) 
  Lower bound (Ω) 
  Asymptotically tight (Θ) 

  Analysis Case 
  Worst Case (Adversary), Tworst(n) 
  Average Case, Tavg(n) 
  Best Case, Tbest(n) 
  Amortized, Tamort(n) 

  One can estimate the bounds for any given case. 



Example 
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List.contains(Object o) 

  returns true if the list contains o; false 
otherwise 

  Input size:  n  (the length of the List) 
  f(n) = “running time for size n” 
  But f(n) needs clarification: 

  Worst case f(n): it runs in at most f(n) time 
  Best case f(n): it takes at least f(n) time 
  Average case f(n): average time 



Recursive programming 
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  A method in Java can call itself; if written that way, it is 
called a recursive method 

  The code of a recursive method should be written to 
handle the problem in one of two ways: 
  base case: a simple case of the problem that can be answered 

directly; does not use recursion. 
  recursive case: a more complicated case of the problem, that 

isn't easy to answer directly, but can be expressed elegantly with 
recursion; makes a recursive call to help compute the overall 
answer 



Recursive power function 
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  Defining powers recursively: 

pow(x, 0) = 1 
pow(x, y) = x * pow(x, y-1),   y > 0 

// recursive implementation 
public static int pow(int x, int y) { 
    if (y == 0) { 
        return 1; 
    } else { 
        return x * pow(x, y - 1); 
    } 
} 


