
CSE 373
Data Structures and Algorithms

Lecture 5: Math Review/Asymptotic Analysis III

Series of Constants

2

  Sum of constants
(when the body of the series doesn't contain the counter
variable such as i)

  Example:

Splitting Series

3

For any constant k,
  splitting a sum with addition

  moving out a constant multiple

 Series of Powers

4

  Sum of powers of 2

1 + 2 + 4 + 8 + 16 + 32 = 64 - 1 = 63
think about binary representation of numbers:
 111111 (63)
 + 1 (1)
 1000000 (64)

(and now a crash course on binary numbers…)

More Series Identities

5

  Sum from a through N inclusive
(when the series doesn't start at 1)

  Is there an intuition for this identity?

  Can apply same idea if you want the split series to start
from 0

Series Practice Problems

6

  Give a closed form expression for the following
summation.
  A closed form expression is one without the Σ or "…".

  Give a closed form expression for the following
summation.

Efficiency examples 6 (revisited)

7

int sum = 0;
for (int i = 1; i <= n; i++) {

 for (int j = 1; j <= i / 2; j += 2) {
 sum++;
 }
}

  Compute the value of the variable sum after the following
code fragment, as a closed-form expression in terms of input
size n.
  Ignore small errors caused by i not being evenly divisible by 2 and

4.

Growth Rate Terminology (recap)

8

  f(n) = O(g(N))
  g(n) is an upper bound on f(n)
  f(n) grows no faster than g(n)

  f(n) = Ω(g(N))
  g(N) is a lower bound on f(n)
  f(n) grows at least as fast as g(N)

  f(n) = Θ(g(N))
  f(n) grows at the same rate as g(N)

Facts About Big-Oh

9

  If T1(N) = O(f(N)) and T2(N) = O(g(N)), then
  T1(N) + T2(N) = O(f(N) + g(N))
  T1(N) * T2(N) = O(f(N) * g(N))

  If T(N) is a polynomial of degree k, then:
  T(N) = Θ(Nk)
  Example: 17n3 + 2n2 + 4n + 1 = Θ(n3)

  logk N = O(N), for any constant k (for us, k will generally be 1)

Complexity classes

10

  complexity class: A category of algorithm efficiency based on
the algorithm's relationship to the input size N.

Class Big-Oh If you double N, ... Example
constant O(1) unchanged 10ms
logarithmic O(log2 N) increases slightly 175ms
linear O(N) doubles 3.2 sec
log-linear O(N log2 N) slightly more than doubles 6 sec
quadratic O(N2) quadruples 1 min 42 sec

cubic O(N3) multiplies by 8 55 min

...

exponential O(2N) multiplies drastically 5 * 1061 years

Complexity cases

11

  Worst-case
  “most challenging” input of size n

  Best-case
  “easiest” input of size n

  Average-case
  random inputs of size n

  Amortized
  m “most challenging” consecutive inputs of size n, divided by m

Bounds vs. Cases

12

Two orthogonal axes:

  Bound
  Upper bound (O)
  Lower bound (Ω)
  Asymptotically tight (Θ)

  Analysis Case
  Worst Case (Adversary), Tworst(n)
  Average Case, Tavg(n)
  Best Case, Tbest(n)
  Amortized, Tamort(n)

  One can estimate the bounds for any given case.

Example

13

List.contains(Object o)

  returns true if the list contains o; false
otherwise

  Input size: n (the length of the List)
  f(n) = “running time for size n”
  But f(n) needs clarification:

  Worst case f(n): it runs in at most f(n) time
  Best case f(n): it takes at least f(n) time
  Average case f(n): average time

Recursive programming

14

  A method in Java can call itself; if written that way, it is
called a recursive method

  The code of a recursive method should be written to
handle the problem in one of two ways:
  base case: a simple case of the problem that can be answered

directly; does not use recursion.
  recursive case: a more complicated case of the problem, that

isn't easy to answer directly, but can be expressed elegantly with
recursion; makes a recursive call to help compute the overall
answer

Recursive power function

15

  Defining powers recursively:

pow(x, 0) = 1
pow(x, y) = x * pow(x, y-1), y > 0

// recursive implementation
public static int pow(int x, int y) {
 if (y == 0) {
 return 1;
 } else {
 return x * pow(x, y - 1);
 }
}

