CSE 373 Data Structures and Algorithms

Lecture 5: Math Review/Asymptotic Analysis III

Series of Constants

Sum of constants

(when the body of the series doesn't contain the counter variable such as *i*)

$$\sum_{i=a}^{b} k = k \sum_{i=a}^{b} 1 = k(b - a + 1)$$

• Example:

$$\sum_{i=4}^{10} 5 = 5\sum_{i=4}^{10} 1 = 5(10 - 4 + 1) = 35$$

Splitting Series

For any constant k,

splitting a sum with addition

$$\sum_{i=a}^{b} \left(i+k\right) = \sum_{i=a}^{b} i + \sum_{i=a}^{b} k$$

moving out a constant multiple

$$\sum_{i=a}^{b} ki = k \sum_{i=a}^{b} i$$

Series of Powers

Sum of powers of 2

$$\sum_{i=0}^{N} 2^{i} = 2^{N+1} - 1$$

think about binary representation of numbers:

(and now a crash course on binary numbers...)

More Series Identities

 Sum from a through N inclusive (when the series doesn't start at I)

$$\sum_{i=a}^{N} i = \sum_{i=1}^{N} i - \sum_{i=1}^{a-1} i$$

- Is there an intuition for this identity?
- Can apply same idea if you want the split series to start from 0

$$\sum_{i=a}^{N} 2^{i} = \sum_{i=0}^{N} 2^{i} - \sum_{i=0}^{a-1} 2^{i}$$

Series Practice Problems

- Give a closed form expression for the following summation.
 - A closed form expression is one without the Σ or "...".

• Give a closed form expression for the following summation.

$$\sum_{i=10}^{N-1} (i-5)$$

Efficiency examples 6 (revisited)

```
int sum = 0;
for (int i = 1; i <= n; i++) {
    for (int j = 1; j <= i / 2; j += 2) {
        sum++;
    }
}
```

- Compute the value of the variable sum after the following code fragment, as a closed-form expression in terms of input size n.
 - Ignore small errors caused by i not being evenly divisible by 2 and 4.

Growth Rate Terminology (recap)

- ▶ f(n) = O(g(N))
 - g(n) is an upper bound on f(n)
 - f(n) grows no faster than g(n)
- $f(n) = \Omega(g(N))$
 - g(N) is a lower bound on f(n)
 - f(n) grows at least as fast as g(N)
- $f(n) = \Theta(g(N))$
 - f(n) grows at the same rate as g(N)

Facts About Big-Oh

- If T₁(N) = O(f(N)) and T₂(N) = O(g(N)), then
 T₁(N) + T₂(N) = O(f(N) + g(N))
 T₁(N) * T₂(N) = O(f(N) * g(N))
- If T(N) is a polynomial of degree k, then:
 - $\succ T(N) = \Theta(N^k)$
 - Example: $|7n^3 + 2n^2 + 4n + | = \Theta(n^3)$
- ▶ $log^k N = O(N)$, for any constant k (for us, k will generally be I)

Complexity classes

• **complexity class**: A category of algorithm efficiency based on the algorithm's relationship to the input size N.

Class	Big-Oh	If you double N,	Example
constant	O(1)	unchanged	10ms
logarithmic	O(log ₂ N)	increases slightly	175ms
linear	O(N)	doubles	3.2 sec
log-linear	$O(N \log_2 N)$	slightly more than doubles	6 sec
quadratic	O(N ²)	quadruples	1 min 42 sec
cubic	O(N ³)	multiplies by 8	55 min
		•••	
exponential	O(2 ^N)	multiplies drastically	5 * 10 ⁶¹ years

Complexity cases

• Worst-case

"most challenging" input of size n

Best-case

"easiest" input of size n

Average-case

random inputs of size n

Amortized

• m "most challenging" consecutive inputs of size n, divided by m

Bounds vs. Cases

Two orthogonal axes:

Bound

- Upper bound (O)
- Lower bound (Ω)
- Asymptotically tight (Θ)

Analysis Case

- Worst Case (Adversary), T_{worst}(n)
- Average Case, T_{avg}(n)
- Best Case, T_{best}(n)
- Amortized, T_{amort}(n)

• One can estimate the bounds for any given case.

Example

List.contains(Object o)

- returns true if the list contains o; false otherwise
- Input size: n (the length of the List)
- f(n) = "running time for size n"
- But f(n) needs clarification:
 - Worst case f(n): it runs in at most f(n) time
 - Best case f(n): it takes at least f(n) time
 - Average case f(n): average time

Recursive programming

- A method in Java can call itself; if written that way, it is called a recursive method
- The code of a recursive method should be written to handle the problem in one of two ways:
 - **base case**: a simple case of the problem that can be answered directly; does not use recursion.
 - recursive case: a more complicated case of the problem, that isn't easy to answer directly, but can be expressed elegantly with recursion; makes a recursive call to help compute the overall answer

Recursive power function

```
Defining powers recursively:
```

```
pow(x, 0) = 1

pow(x, y) = x * pow(x, y-1), y > 0
```

```
// recursive implementation
public static int pow(int x, int y) {
    if (y == 0) {
        return 1;
    } else {
        return x * pow(x, y - 1);
    }
}
```