
CSE 373
Data Structures and Algorithms

Lecture 5: Math Review/Asymptotic Analysis III

Series of Constants

2

  Sum of constants
(when the body of the series doesn't contain the counter
variable such as i)

  Example:

Splitting Series

3

For any constant k,
  splitting a sum with addition

  moving out a constant multiple

 Series of Powers

4

  Sum of powers of 2

1 + 2 + 4 + 8 + 16 + 32 = 64 - 1 = 63
think about binary representation of numbers:
 111111 (63)
 + 1 (1)
 1000000 (64)

(and now a crash course on binary numbers…)

More Series Identities

5

  Sum from a through N inclusive
(when the series doesn't start at 1)

  Is there an intuition for this identity?

  Can apply same idea if you want the split series to start
from 0

Series Practice Problems

6

  Give a closed form expression for the following
summation.
  A closed form expression is one without the Σ or "…".

  Give a closed form expression for the following
summation.

Efficiency examples 6 (revisited)

7

int sum = 0;
for (int i = 1; i <= n; i++) {

 for (int j = 1; j <= i / 2; j += 2) {
 sum++;
 }
}

  Compute the value of the variable sum after the following
code fragment, as a closed-form expression in terms of input
size n.
  Ignore small errors caused by i not being evenly divisible by 2 and

4.

Growth Rate Terminology (recap)

8

  f(n) = O(g(N))
  g(n) is an upper bound on f(n)
  f(n) grows no faster than g(n)

  f(n) = Ω(g(N))
  g(N) is a lower bound on f(n)
  f(n) grows at least as fast as g(N)

  f(n) = Θ(g(N))
  f(n) grows at the same rate as g(N)

Facts About Big-Oh

9

  If T1(N) = O(f(N)) and T2(N) = O(g(N)), then
  T1(N) + T2(N) = O(f(N) + g(N))
  T1(N) * T2(N) = O(f(N) * g(N))

  If T(N) is a polynomial of degree k, then:
  T(N) = Θ(Nk)
  Example: 17n3 + 2n2 + 4n + 1 = Θ(n3)

  logk N = O(N), for any constant k (for us, k will generally be 1)

Complexity classes

10

  complexity class: A category of algorithm efficiency based on
the algorithm's relationship to the input size N.

Class Big-Oh If you double N, ... Example
constant O(1) unchanged 10ms
logarithmic O(log2 N) increases slightly 175ms
linear O(N) doubles 3.2 sec
log-linear O(N log2 N) slightly more than doubles 6 sec
quadratic O(N2) quadruples 1 min 42 sec

cubic O(N3) multiplies by 8 55 min

...

exponential O(2N) multiplies drastically 5 * 1061 years

Complexity cases

11

  Worst-case
  “most challenging” input of size n

  Best-case
  “easiest” input of size n

  Average-case
  random inputs of size n

  Amortized
  m “most challenging” consecutive inputs of size n, divided by m

Bounds vs. Cases

12

Two orthogonal axes:

  Bound
  Upper bound (O)
  Lower bound (Ω)
  Asymptotically tight (Θ)

  Analysis Case
  Worst Case (Adversary), Tworst(n)
  Average Case, Tavg(n)
  Best Case, Tbest(n)
  Amortized, Tamort(n)

  One can estimate the bounds for any given case.

Example

13

List.contains(Object o)

  returns true if the list contains o; false
otherwise

  Input size: n (the length of the List)
  f(n) = “running time for size n”
  But f(n) needs clarification:

  Worst case f(n): it runs in at most f(n) time
  Best case f(n): it takes at least f(n) time
  Average case f(n): average time

Recursive programming

14

  A method in Java can call itself; if written that way, it is
called a recursive method

  The code of a recursive method should be written to
handle the problem in one of two ways:
  base case: a simple case of the problem that can be answered

directly; does not use recursion.
  recursive case: a more complicated case of the problem, that

isn't easy to answer directly, but can be expressed elegantly with
recursion; makes a recursive call to help compute the overall
answer

Recursive power function

15

  Defining powers recursively:

pow(x, 0) = 1
pow(x, y) = x * pow(x, y-1), y > 0

// recursive implementation
public static int pow(int x, int y) {
 if (y == 0) {
 return 1;
 } else {
 return x * pow(x, y - 1);
 }
}

