CSE 373

Data Structures and Algorithms

Lecture 5: Math Review/Asymptotic Analysis III

Series of Constants

- Sum of constants
(when the body of the series doesn't contain the counter variable such as i)

$$
\sum_{i=a}^{b} k=k \sum_{i=a}^{b} 1=k(b-a+1)
$$

- Example:

$$
\sum_{i=4}^{10} 5=5 \sum_{i=4}^{10} 1=5(10-4+1)=35
$$

Splitting Series

For any constant k,

- splitting a sum with addition

$$
\sum_{i=a}^{b}(i+k)=\sum_{i=a}^{b} i+\sum_{i=a}^{b} k
$$

- moving out a constant multiple

$$
\sum_{i=a}^{b} k i=k \sum_{i=a}^{b} i
$$

Series of Powers

- Sum of powers of 2

$$
\begin{aligned}
& \sum_{i=0}^{N} 2^{i}=2^{N+1}-1 \\
& 1+2+4+8+16+32=64-1=63
\end{aligned}
$$

think about binary representation of numbers:
\|l|||| (63)
$+\quad 1(1)$

$$
1000000(64)
$$

(and now a crash course on binary numbers...)

More Series Identities

- Sum from a through N inclusive (when the series doesn't start at I)

$$
\sum_{i=a}^{N} i=\sum_{i=1}^{N} i-\sum_{i=1}^{a-1} i
$$

- Is there an intuition for this identity?
- Can apply same idea if you want the split series to start from 0

$$
\sum_{i=a}^{N} 2^{i}=\sum_{i=0}^{N} 2^{i}-\sum_{i=0}^{a-1} 2^{i}
$$

Series Practice Problems

- Give a closed form expression for the following summation.
- A closed form expression is one without the Σ or "...".
$\sum_{i=0}^{N-2} 2 i$
- Give a closed form expression for the following summation.
$\sum_{i=10}^{N-1}(i-5)$

```
Efficiency examples 6 (revisited)
int sum = 0;
for (int i = 1; i <= n; i++) {
    for (int j = 1; j <= i / 2; j += 2) {
    sum++;
    }
}
```

- Compute the value of the variable sum after the following code fragment, as a closed-form expression in terms of input size n.
, Ignore small errors caused by i not being evenly divisible by 2 and 4.

Growth Rate Terminology (recap)

- $\mathrm{f}(\mathrm{n})=\mathrm{O}(\mathrm{g}(\mathrm{N}))$
- $g(n)$ is an upper bound on $f(n)$
- $f(n)$ grows no faster than $g(n)$
- $f(n)=\Omega(g(N))$
- $g(N)$ is a lower bound on $f(n)$
- $f(n)$ grows at least as fast as $g(N)$
- $f(n)=\Theta(g(N))$
- $f(n)$ grows at the same rate as $g(N)$

Facts About Big-Oh

- If $T_{1}(N)=O(f(N))$ and $T_{2}(N)=O(g(N))$, then
- $\mathrm{T}_{1}(\mathrm{~N})+\mathrm{T}_{2}(\mathrm{~N})=\mathrm{O}(\mathrm{f}(\mathrm{N})+\mathrm{g}(\mathrm{N}))$
- $\mathrm{T}_{1}(\mathrm{~N}) * \mathrm{~T}_{2}(\mathrm{~N})=\mathrm{O}(\mathrm{f}(\mathrm{N}) * \mathrm{~g}(\mathrm{~N}))$
- If $\mathrm{T}(\mathrm{N})$ is a polynomial of degree k, then:
- $\mathrm{T}(\mathrm{N})=\Theta\left(\mathrm{N}^{k}\right)$
- Example: $17 n^{3}+2 n^{2}+4 n+1=\Theta\left(n^{3}\right)$
- $\log ^{k} N=O(N)$, for any constant k (for us, k will generally be I)

Complexity classes

- complexity class:A category of algorithm efficiency based on the algorithm's relationship to the input size N .

Class	Big-Oh	If you double \mathbf{N}, \ldots	Example
constant	$\mathrm{O}(1)$	unchanged	10 ms
logarithmic	$\mathrm{O}\left(\log _{2} \mathrm{~N}\right)$	increases slightly	175 ms
linear	$\mathrm{O}(\mathrm{N})$	doubles	3.2 sec
log-linear	$\mathrm{O}\left(\mathrm{N} \log _{2} \mathrm{~N}\right)$	slightly more than doubles	6 sec
quadratic	$\mathrm{O}\left(\mathrm{N}^{2}\right)$	quadruples	1 min 42 sec
cubic	$\mathrm{O}\left(\mathrm{N}^{3}\right)$	multiplies by 8	55 min
\ldots	\ldots	\ldots	\ldots
exponential	$\mathrm{O}\left(2^{\mathrm{N}}\right)$	multiplies drastically	$5^{*} 10^{61}$ years

Complexity cases

- Worst-case
, "most challenging" input of size n
- Best-case
" "easiest" input of size n
- Average-case
> random inputs of size n
- Amortized
" m"most challenging" consecutive inputs of size n, divided by m

Bounds vs. Cases

Two orthogonal axes:

- Bound
- Upper bound (O)
- Lower bound (Ω)
- Asymptotically tight (Θ)
- Analysis Case
, Worst Case (Adversary), $\mathrm{T}_{\text {worst }}(\mathrm{n})$
- Average Case, $\mathrm{T}_{\text {avg }}$ (n)
- Best Case, $T_{\text {best }}(n)$
- Amortized, $\mathrm{T}_{\text {amort }}(\mathrm{n})$
- One can estimate the bounds for any given case.

Example

List.contains (Object o)

- returns true if the list contains \circ; false otherwise
- Input size: n (the length of the List)
- $f(n)=$ "running time for size $n "$
- But $f(n)$ needs clarification:
- Worst case $f(n)$: it runs in at most $f(n)$ time
- Best case $f(n)$: it takes at least $f(n)$ time
- Average case $f(n)$: average time

Recursive programming

- A method in Java can call itself; if written that way, it is called a recursive method
- The code of a recursive method should be written to handle the problem in one of two ways:
- base case: a simple case of the problem that can be answered directly; does not use recursion.
- recursive case: a more complicated case of the problem, that isn't easy to answer directly, but can be expressed elegantly with recursion; makes a recursive call to help compute the overall answer

Recursive power function

- Defining powers recursively:

```
pow (x, 0) = 1
pow(x, y) = x * pow(x, y-1), y > 0
// recursive implementation
public static int pow(int x, int y) {
    if (y == 0) {
        return 1;
    } else {
        return x * pow(x, y - 1);
    }
}
```

