
CSE 373
Data Structures and Algorithms

Lecture 4: Asymptotic Analysis II / Math Review

Big-Oh notation

2

  Defn: f(n) = O(g(n)), if there exists
positive constants c and n0 such
that: f(n) ≤ c· g(n) for all n ≥ n0

  Asymptotic upper bound

  Idea: We are concerned with how
the function grows when N is
large.
  We are not concerned with constant

factors

  Lingo: "f(n) grows no faster than
g(n)."

c *

Functions in Algorithm Analysis

3

  f(n) : {0, 1, … } → ℜ+

  domain of f is the nonnegative integers (count of data)
  range of f is the nonnegative reals (time)

  We use many functions with other domains and ranges.
  Example: f(n) = 5 n log2 (n/3)

  Although the domain of f is nonnegative integers, the domain of
log2 is all positive reals.

Big-Oh example problems

4

  n = O(2n) ?

  2n = O(n) ?

  n = O(n2) ?

  n2 = O(n) ?

  n = O(1) ?

  100 = O(n) ?

  214n + 34 = O(2n2 + 8n) ?

Preferred Big-Oh usage

5

  Pick tightest bound. If f(n) = 5n, then:
 f(n) = O(n5)
 f(n) = O(n3)
 f(n) = O(n log n)
 f(n) = O(n) ← preferred

  Ignore constant factors and low order terms
 f(n) = O(n), not f(n) = O(5n)
 f(n) = O(n3), not f(n) = O(n3 + n2 + n log n)

  Wrong: f(n) ≤ O(g(n))

  Wrong: f(n) ≥ O(g(n))

Show f(n) = O(n)

6

  Claim:	
 2n	
 +	
 6	
 =	
 O(n)	

  Proof:	
 Must	
 find	
 c,	
 n0	
 such	
 that	
 for	
 all	
 n	
 >	
 n0,	
 2n	
 +	
 6	
 <=	
 c	
 *	
 n	

Big omega, theta

7

  big-Oh Defn: f(n) = O(g(n)) if there exist positive
constants c and n0 such that f(n) ≤ c· g(n) for all n ≥ n0

  big-Omega Defn: f(n) = Ω(g(n)) if there exist positive
constants c and n0 such that f(n) ≥ c· g(n) for all n ≥ n0
  Lingo: "f(n) grows no slower than g(n)."

  big-Theta Defn: f(n) = Θ(g(n)) if and only if f(n) =
O(g(n)) and f(n) = Ω(g(n)).
  Big-Oh, Omega, and Theta establish a relative ordering among

all functions of n

notation intuition

O (Big-Oh) f(n) ≤ g(n)

Ω (Big-Omega) f(n) ≥ g(n)

Θ (Theta) f(n) = g(n)

Intuition about the notations

8

Little Oh
  little-Oh Defn: f(n) = o(g(n)) if for all positive constants c

there exists an n0 such that f(n) < c· g(n) for all n ≥ n0. In
other words, f(n) = O(g(n)) and f(n) ≠ Θ(g(n))

9

Efficiency examples 3

10

sum = 0;
for (int i = 1; i <= N * N; i++) {
 for (int j = 1; j <= N * N * N; j++) {
 sum++;
 }
}

  What is the Big-Oh?

N5 + 1 N2 N3

Math background: Exponents

11

  Exponents
  XY , or "X to the Yth power";

X multiplied by itself Y times

  Some useful identities
  XA XB = XA+B

  XA / XB = XA-B

  (XA)B = XAB

  XN+XN = 2XN

  2N+2N = 2N+1

Efficiency examples 4

12

sum = 0;
for (int i = 1; i <= N; i += c) {
 sum++;
}

  What is the Big-Oh?

N/c + 1 N/c

Efficiency examples 5

13

sum = 0;
for (int i = 1; i <= N; i *= c) {
 sum++;
}

  What is the Big-Oh?

Equivalently (running time-wise):

i = N;
while (i > 1) {
 i /= c;
}

	
 logc	
 N	
 + 1 logc	
 N

	
 logc	
 N	
 + 1 logc	
 N

Math background: Logarithms

14

  Logarithms
  definition: XA = B if and only if logX B = A
  intuition: logX B means: "the power X must be raised to,

to get B”

  In this course, a logarithm with no base implies base 2.
log B means log2 B

  Examples
  log2 16 = 4 (because 24 = 16)
  log10 1000 = 3 (because 103 = 1000)

Logarithm identities
  Identities for logs:

  log (AB) = log A + log B
  log (A/B) = log A – log B
  log (AB) = B log A

  Identity for converting bases of a logarithm:

  example:
log4 32 = (log2 32) / (log2 4)
 = 5 / 2

15

Techniques: Logarithm problem solving

16

  When presented with an expression of the form:
logaX = Y

 and trying to solve for X, raise both sides to the a power.
X = aY

  When presented with an expression of the form:
logaX = logbY

 and trying to solve for X, find a common base between
the logarithms using the identity on the last slide.
logaX = logaY / logab

Prove identity for converting bases

17

Prove logab = logcb / logca.

A log is a log…

18

  We will assume all logs are to base 2

  Fine for Big Oh analysis because the log to one base is
equivalent to the log of another base within a constant
factor
  E.g., log10x is equivalent to log2x within what constant factor?

Efficiency examples 6

19

int sum = 0;
for (int i = 1; i <= n; i++) {

 for (int j = 1; j <= i / 2; j += 2) {
 sum++;
 }
}

Math background: Arithmetic series

20

  Series

  for some expression Expr (possibly containing i), means the sum of
all values of Expr with each value of i between j and k inclusive

 Example:	

	
 	
 =	
 (2(0)	
 +	
 1)	
 +	
 (2(1)	
 +	
 1)	
 +	
 (2(2)	
 +	
 1)	
 +	
 (2(3)	
 +	
 1)	
 +	
 (2(4)	
 +	
 1)	

	
 =	
 1	
 +	
 3	
 +	
 5	
 +	
 7	
 +	
 9	

	
 =	
 25	

Series Identities
  Sum from 1 through N inclusive

  Is there an intuition for this identity?

 Sum of all numbers from 1 to N

1 + 2 + 3 + ... + (N-2) + (N-1) + N

  How many terms are in this sum? Can we rearrange them?

21

