
CSE 373 
Data Structures and Algorithms 

Lecture 4: Asymptotic Analysis II / Math Review 



Big-Oh notation 
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  Defn: f(n) = O(g(n)), if there exists 
positive constants c and n0 such 
that:  f(n) ≤ c· g(n)  for all n ≥ n0  

  Asymptotic upper bound 

  Idea: We are concerned with how 
the function grows when N is 
large.  
  We are not concerned with constant 

factors 

  Lingo: "f(n) grows no faster than 
g(n)." 

c *  



Functions in Algorithm Analysis 
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  f(n) : {0, 1, … } → ℜ+ 

  domain of f is the nonnegative integers (count of data) 
  range of f is the nonnegative reals (time) 

  We use many functions with other domains and ranges. 
  Example:    f(n) = 5 n log2 (n/3) 

  Although the domain of f is nonnegative integers, the domain of 
log2 is all positive reals. 



Big-Oh example problems 
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  n = O(2n) ? 

  2n = O(n) ? 

  n = O(n2) ? 

  n2 = O(n) ? 

  n = O(1)  ? 

  100 = O(n) ? 

  214n + 34 = O(2n2 + 8n) ? 



Preferred Big-Oh usage 
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  Pick tightest bound.  If f(n) = 5n, then: 
 f(n) = O(n5) 
 f(n) = O(n3) 
 f(n) = O(n log n) 
 f(n) = O(n)   ← preferred 

  Ignore constant factors and low order terms 
 f(n) = O(n),    not   f(n) = O(5n) 
 f(n) = O(n3),   not   f(n) = O(n3 + n2 + n log n) 

  Wrong: f(n) ≤ O(g(n)) 

  Wrong: f(n) ≥ O(g(n)) 



Show f(n) = O(n) 
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  Claim:	
  2n	
  +	
  6	
  =	
  O(n)	
  
  Proof:	
  Must	
  find	
  c,	
  n0	
  such	
  that	
  for	
  all	
  n	
  >	
  n0,	
  2n	
  +	
  6	
  <=	
  c	
  *	
  n	
  



Big omega, theta 
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  big-Oh Defn: f(n) = O(g(n)) if there exist positive 
constants c and n0 such that f(n) ≤ c· g(n)  for all n ≥ n0  

  big-Omega Defn: f(n) = Ω(g(n)) if there exist positive 
constants c and n0 such that f(n) ≥ c· g(n) for all n ≥ n0  
  Lingo: "f(n) grows no slower than g(n)." 

  big-Theta Defn: f(n) =  Θ(g(n)) if and only if f(n) = 
O(g(n)) and f(n) = Ω(g(n)). 
  Big-Oh, Omega, and Theta establish a relative ordering among 

all functions of n 



notation intuition 

O (Big-Oh) f(n) ≤ g(n) 

Ω (Big-Omega) f(n) ≥ g(n) 

Θ (Theta) f(n) = g(n) 

Intuition about the notations 
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Little Oh 
  little-Oh Defn: f(n) = o(g(n)) if for all positive constants c 

there exists an n0 such that f(n) < c· g(n)  for all n ≥ n0.  In 
other words, f(n) = O(g(n)) and f(n) ≠ Θ(g(n))  
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Efficiency examples 3 
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sum = 0; 
for (int i = 1; i <= N * N; i++) { 
    for (int j = 1; j <= N * N * N; j++) { 
        sum++; 
    } 
} 

  What is the Big-Oh? 

N5 + 1 N2 N3 



Math background: Exponents 
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  Exponents 
  XY , or "X to the Yth power"; 

X multiplied by itself Y times 

  Some useful identities 
  XA XB = XA+B 

  XA  / XB = XA-B 

  (XA)B = XAB 

  XN+XN = 2XN 

  2N+2N = 2N+1 



Efficiency examples 4 
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sum = 0; 
for (int i = 1; i <= N; i += c) { 
    sum++; 
} 

  What is the Big-Oh? 

N/c + 1 N/c 



Efficiency examples 5 
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sum = 0; 
for (int i = 1; i <= N; i *= c) { 
    sum++; 
} 

  What is the Big-Oh? 

Equivalently (running time-wise): 

i = N; 
while (i > 1) { 
    i /= c; 
} 

	
  logc	
  N	
  + 1 logc	
  N 

	
  logc	
  N	
  + 1 logc	
  N 



Math background: Logarithms 
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  Logarithms 
  definition:  XA = B if and only if logX B = A 
  intuition: logX B means: "the power X must be raised to, 

to get B” 

  In this course, a logarithm with no base implies base 2. 
log B  means log2 B 

  Examples 
  log2 16 = 4  (because 24 = 16) 
  log10 1000 = 3  (because 103 = 1000) 



Logarithm identities 
  Identities for logs: 

  log (AB) = log A + log B 
  log (A/B) = log A – log B 
  log (AB) = B log A 

  Identity for converting bases of a logarithm: 

  example: 
log4 32 = (log2 32) / (log2 4) 
          = 5 / 2 
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Techniques: Logarithm problem solving 
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  When presented with an expression of the form: 
logaX = Y 

 and trying to solve for X, raise both sides to the a power. 
X = aY 

  When presented with an expression of the form: 
logaX = logbY 

 and trying to solve for X, find a common base between 
the logarithms using the identity on the last slide. 
logaX = logaY / logab 



Prove identity for converting bases 
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Prove logab = logcb / logca. 



A log is a log… 
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  We will assume all logs are to base 2 

  Fine for Big Oh analysis because the log to one base is 
equivalent to the log of another base within a constant 
factor 
  E.g., log10x is equivalent to log2x within what constant factor? 



Efficiency examples 6 
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int sum = 0; 
for (int i = 1; i <= n; i++) { 

    for (int j = 1; j <= i / 2; j += 2) { 
        sum++; 
    } 
} 



Math background: Arithmetic series 
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  Series 

  for some expression Expr (possibly containing i), means the sum of 
all values of Expr with each value of i between j and k inclusive 

 Example:	
  

	
   	
  =	
  (2(0)	
  +	
  1)	
  +	
  (2(1)	
  +	
  1)	
  +	
  (2(2)	
  +	
  1)	
  +	
  (2(3)	
  +	
  1)	
  +	
  (2(4)	
  +	
  1)	
  
	
  =	
  1	
  +	
  3	
  +	
  5	
  +	
  7	
  +	
  9	
  
	
  =	
  25	
  



Series Identities 
  Sum from 1 through N inclusive 

  Is there an intuition for this identity? 

 Sum of all numbers from 1 to N 

1 + 2 + 3 + ... + (N-2) + (N-1) + N 

  How many terms are in this sum?  Can we rearrange them? 
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