CSE 373

Data Structures and Algorithms

Lecture 4: Asymptotic Analysis II / Math Review

Big-Oh notation

- Defn: $f(n)=O(g(n))$, if there exists positive constants c and n_{0} such that: $f(n) \leq c \cdot g(n)$ for all $n \geq n_{0}$
- Asymptotic upper bound
- Idea:We are concerned with how the function grows when N is large.
, We are not concerned with constant factors

- Lingo: " $f(n)$ grows no faster than $g(n) . "$

Functions in Algorithm Analysis

- $f(n):\{0, I, \ldots\} \rightarrow \mathfrak{R}^{+}$
- domain of f is the nonnegative integers (count of data)
b range of f is the nonnegative reals (time)
- We use many functions with other domains and ranges.
- Example: $f(n)=5 n \log _{2}(n / 3)$
- Although the domain of f is nonnegative integers, the domain of $\log _{2}$ is all positive reals.

Big-Oh example problems

- $\mathrm{n}=\mathrm{O}(2 \mathrm{n})$?
- $2 \mathrm{n}=\mathrm{O}(\mathrm{n})$?
- $\mathrm{n}=\mathrm{O}\left(\mathrm{n}^{2}\right)$?
- $\mathrm{n}^{2}=\mathrm{O}(\mathrm{n})$?
- $n=O(1)$?
- $100=O(n)$?
- $214 n+34=O\left(2 n^{2}+8 n\right)$?

Preferred Big-Oh usage

- Pick tightest bound. If $f(n)=5 n$, then:

$$
\begin{aligned}
& f(n)=O\left(n^{5}\right) \\
& f(n)=O\left(n^{3}\right) \\
& f(n)=O(n \log n) \\
& f(n)=O(n) \quad \leftarrow \text { preferred }
\end{aligned}
$$

- Ignore constant factors and low order terms

$$
\begin{aligned}
& f(n)=O(n), \text { not } f(n)=O(5 n) \\
& f(n)=O\left(n^{3}\right), \text { not } f(n)=O\left(n^{3}+n^{2}+n \log n\right)
\end{aligned}
$$

- Wrong: $f(n) \leq O(g(n))$
- Wrong: $f(n) \geq O(g(n))$

Show $f(n)=O(n)$

- Claim: $2 \mathrm{n}+6=\mathrm{O}(\mathrm{n})$
- Proof: Must find c, n_{0} such that for all $n>n_{0}, 2 n+6<=c * n$

Big omega, theta

- big-Oh Defn: $f(n)=O(g(n))$ if there exist positive constants c and n_{0} such that $f(n) \leq c \cdot g(n)$ for all $n \geq n_{0}$
- big-Omega Defn: $f(n)=\Omega(g(n))$ if there exist positive constants c and n_{0} such that $f(n) \geq c \cdot g(n)$ for all $n \geq n_{0}$ - Lingo: "f(n) grows no slower than $g(n) . "$
- big-Theta Defn: $f(n)=\Theta(g(n))$ if and only if $f(n)=$ $O(g(n))$ and $f(n)=\Omega(g(n))$.
- Big-Oh, Omega, and Theta establish a relative ordering among all functions of n

Intuition about the notations

notation	intuition
O (Big-Oh)	$f(n) \leq g(n)$
Ω (Big-Omega)	$f(n) \geq g(n)$
Θ (Theta)	$f(n)=g(n)$

Little Oh

- little-Oh Defn: $f(n)=o(g(n))$ if for all positive constants c there exists an n_{0} such that $f(n)<c \cdot g(n)$ for all $n \geq n_{0}$. In other words, $f(n)=O(g(n))$ and $f(n) \neq \Theta(g(n))$

Efficiency examples 3

- What is the Big-Oh?

Math background: Exponents

- Exponents
- X^{Y}, or " X to the $Y^{\text {th }}$ power";
X multiplied by itself Y times
- Some useful identities
- $X^{A} X^{B}=X^{A+B}$
- $X^{A} / X^{B}=X^{A-B}$
- $\left(X^{A}\right)^{B}=X^{A B}$
- $X^{N}+X^{N}=2 X^{N}$
- $2^{N+2 N}=2^{N+1}$

Efficiency examples 4

- What is the Big-Oh?

Efficiency examples 5

- What is the Big-Oh?

Equivalently (running time-wise):

Math background: Logarithms

- Logarithms
- definition: $X^{A}=B$ if and only if $\log _{X} B=A$
- intuition: $\log _{x} B$ means: "the power X must be raised to, to get B"
- In this course, a logarithm with no base implies base 2. $\log B$ means $\log _{2} B$
- Examples
- $\log _{2} 16=4 \quad$ (because $2^{4}=16$)
- $\log _{10} 1000=3$ (because $\left.10^{3}=1000\right)$

Logarithm identities

- Identities for logs:
- $\log (A B)=\log A+\log B$
- $\log (A / B)=\log A-\log B$
- $\log \left(A^{B}\right)=B \log A$
- Identity for converting bases of a logarithm:

$$
\log _{A} B=\frac{\log _{C} B}{\log _{C} A} \quad A, B, C>0, A \neq 1
$$

- example:

$$
\begin{aligned}
\log _{4} 32 & =\left(\log _{2} 32\right) /\left(\log _{2} 4\right) \\
& =5 / 2
\end{aligned}
$$

Techniques: Logarithm problem solving

- When presented with an expression of the form: $\log _{a} X=Y$ and trying to solve for X, raise both sides to the a power. $X=a^{Y}$
- When presented with an expression of the form:
$\log _{a} X=\log _{b} Y$
and trying to solve for X, find a common base between the logarithms using the identity on the last slide. $\log _{a} X=\log _{a} Y / \log _{a} b$

Prove identity for converting bases

Prove $\log _{a} b=\log _{c} b / \log _{c} a$.

A \log is a log...

- We will assume all logs are to base 2
- Fine for Big Oh analysis because the log to one base is equivalent to the log of another base within a constant factor
- E.g., $\log _{10} x$ is equivalent to $\log _{2} x$ within what constant factor?

```
Efficiency examples 6
int sum = 0;
for (int \(i=1 ; i<=n\); \(i++\) ) \(\{\)
    for (int j = 1; j <= i / 2; j += 2) \{
    sum++;
    \}
\}
```


Math background: Arithmetic series

- Series

$$
\sum_{i=j}^{k} \operatorname{Expr}
$$

- for some expression Expr (possibly containing i), means the sum of all values of Expr with each value of i between j and k inclusive

Example:

$$
\begin{array}{rl}
\sum_{i=0}^{4} & 2 i+1 \\
& =(2(0)+1)+(2(1)+1)+(2(2)+1)+(2(3)+1)+(2(4)+1) \\
& =1+3+5+7+9 \\
& =25
\end{array}
$$

Series Identities

- Sum from I through \mathbf{N} inclusive

$$
\sum_{i=1}^{N} i=\frac{N(N+1)}{2}
$$

- Is there an intuition for this identity?

Sum of all numbers from I to N

$$
\mathrm{I}+2+3+\ldots+(\mathrm{N}-2)+(\mathrm{N}-\mathrm{I})+\mathrm{N}
$$

- How many terms are in this sum? Can we rearrange them?

