
CSE 373
Data Structures and Algorithms

Lecture 3: Introduction to Asymptotic Analysis

Why algorithm analysis?

2

  So much data!!
  Human genome: 3.2 * 109 base pairs

  If there are 7 * 109 on the planet, how many base pairs of human
DNA?

  Earth surface area: 1.49 * 108 km2

  How many photos if taking a photo of each m2?
  For every day of the year (3.65 * 102)?

  But aren't computers getting faster and faster?

Why algorithm analysis?

3

  As problem sizes get bigger, analysis is becoming more
important.

  The difference between good and bad algorithms is
getting bigger.

  Being able to analyze algorithms will help us identify good
ones without having to program them and test them first.

Measuring Performance: Empirical Approach

  Implement it, run it, time it (averaging trials)
  Pros?

  No math!

  Cons?
  Need to implement code
  When comparing two algorithms, all other factors need to be held

constant (e.g., same computer, OS, processor, load)
  A really bad algorithm could take a really long time to execute

4

Measuring Performance: Analytical Approach

  Use a simple model for basic operation costs

  Computational Model
  has all the basic operations:

+, -, *, / , =, comparisons
  infinite memory
  all basic operations take exactly one time unit to execute

5

Measuring Performance: Analytical Approach

  Analyze steps of algorithm, estimating amount of work
each step takes
  Pros?

  Independent of system-specific configuration
  Good for estimating
  Don't need to implement code

  Cons?
  Won't give you info exact runtimes optimizations made by the

computer architecture
  Only gives useful information for large problem sizes
  In real life, not all operations take exactly the same time

(multiplication takes longer than addition) and have memory
limitations

6

Analyzing Performance
  General “rules” to help measure how long it takes to do

things:

7

Basic operations
Consecutive statements

Conditionals
Loops

Function calls
Recursive functions

Constant time
Sum of number of statements
Test, plus larger branch cost
Sum of iterations
Cost of function body
Solve “recurrence relation”

Efficiency examples

8

statement1;
statement2;
statement3;

for (int i = 1; i <= N; i++) {
 statement4;
}

for (int i = 1; i <= N; i++) {
 statement5;
 statement6;
 statement7;
}

3

N

3N

4N + 3

Efficiency examples 2

9

for (int i = 1; i <= N; i++) {
 for (int j = 1; j <= N; j++) {
 statement1;
 }
}

for (int i = 1; i <= N; i++) {
 statement2;
 statement3;
 statement4;
 statement5;
}

  How many statements will execute if N = 10? If N = 1000?

N2 + 4N

N2

4N

Relative rates of growth
  Most algorithms' runtime can be expressed as a function of the

input size N

  rate of growth: measure of how quickly the graph of a
function rises

  Goal: distinguish between fast- and slow-growing functions
  We only care about very large input sizes (for small sizes, almost any

algorithm is fast enough)
  This helps us discover which algorithms will run more quickly or

slowly, for large input sizes

  Most of the time interested in worst case performance;
sometimes look at best or average performance

10

Growth rate example

11

  Consider these graphs of functions.
 Perhaps each one represents an algorithm:
 n3 + 2n2

 100n2 + 1000

  Which grows faster?

Growth rate example
  How about now?

12

