
CSE 373
Data Structures and Algorithms

Lecture 3: Introduction to Asymptotic Analysis

Why algorithm analysis?

2

  So much data!!
  Human genome: 3.2 * 109 base pairs

  If there are 7 * 109 on the planet, how many base pairs of human
DNA?

  Earth surface area: 1.49 * 108 km2

  How many photos if taking a photo of each m2?
  For every day of the year (3.65 * 102)?

  But aren't computers getting faster and faster?

Why algorithm analysis?

3

  As problem sizes get bigger, analysis is becoming more
important.

  The difference between good and bad algorithms is
getting bigger.

  Being able to analyze algorithms will help us identify good
ones without having to program them and test them first.

Measuring Performance: Empirical Approach

  Implement it, run it, time it (averaging trials)
  Pros?

  No math!

  Cons?
  Need to implement code
  When comparing two algorithms, all other factors need to be held

constant (e.g., same computer, OS, processor, load)
  A really bad algorithm could take a really long time to execute

4

Measuring Performance: Analytical Approach

  Use a simple model for basic operation costs

  Computational Model
  has all the basic operations:

+, -, *, / , =, comparisons
  infinite memory
  all basic operations take exactly one time unit to execute

5

Measuring Performance: Analytical Approach

  Analyze steps of algorithm, estimating amount of work
each step takes
  Pros?

  Independent of system-specific configuration
  Good for estimating
  Don't need to implement code

  Cons?
  Won't give you info exact runtimes optimizations made by the

computer architecture
  Only gives useful information for large problem sizes
  In real life, not all operations take exactly the same time

(multiplication takes longer than addition) and have memory
limitations

6

Analyzing Performance
  General “rules” to help measure how long it takes to do

things:

7

Basic operations
Consecutive statements

Conditionals
Loops

Function calls
Recursive functions

Constant time
Sum of number of statements
Test, plus larger branch cost
Sum of iterations
Cost of function body
Solve “recurrence relation”

Efficiency examples

8

statement1;
statement2;
statement3;

for (int i = 1; i <= N; i++) {
 statement4;
}

for (int i = 1; i <= N; i++) {
 statement5;
 statement6;
 statement7;
}

3

N

3N

4N + 3

Efficiency examples 2

9

for (int i = 1; i <= N; i++) {
 for (int j = 1; j <= N; j++) {
 statement1;
 }
}

for (int i = 1; i <= N; i++) {
 statement2;
 statement3;
 statement4;
 statement5;
}

  How many statements will execute if N = 10? If N = 1000?

N2 + 4N

N2

4N

Relative rates of growth
  Most algorithms' runtime can be expressed as a function of the

input size N

  rate of growth: measure of how quickly the graph of a
function rises

  Goal: distinguish between fast- and slow-growing functions
  We only care about very large input sizes (for small sizes, almost any

algorithm is fast enough)
  This helps us discover which algorithms will run more quickly or

slowly, for large input sizes

  Most of the time interested in worst case performance;
sometimes look at best or average performance

10

Growth rate example

11

  Consider these graphs of functions.
 Perhaps each one represents an algorithm:
 n3 + 2n2

 100n2 + 1000

  Which grows faster?

Growth rate example
  How about now?

12

