CSE 373
Data Structures and Algorithms

Lecture 2: Queues

Queue ADT

» queue:A list with the restriction that insertions are done at
one end and deletions are done at the other
First-In, First-Out ("FIFO”)
Elements are stored in order of
insertion but don't have indexes.

Client can only add to the end of the

ront of
ueue

o

ueue, and can only examine/remove on ene
the front of the queue. &
'Fr‘or\"' ba ok
rvemovej — ‘

» basic queue operations: peck
add (enqueue): Add an element to the back.
remove (dequeue): Remove the front element.
peek: Examine the element at the front.

Queues in computer science

» Operating systems:
queue of print jobs to send to the printer
queue of programs / processes to be run
queue of network data packets to send

» Programming:
modeling a line of customers or clients
storing a queue of computations to be performed in order

» Real world examples:
people on an escalator or waiting in a line
cars at a gas station (or on an assembly line)

Using Queues

add (value) | places given value at back of queue
remove () removes value from front of queue and returns it;
throws a NoSuchElementException if queue is empty
peek () returns front value from queue without removing it;
returns null if queue is empty
size () returns number of elements in queue
isEmpty () |returns true if queue has no elements
Queue<Integer> g = new <Integer>();

g.add (42) ;

g.add (-3) ; // T \\

qg.add (17) ; // front [42, -3, 17] back
System.out.println(g.remove()); // 42

IMPORTANT:When constructing a queue you must use a new
LinkedList object instead of a new Queue object.

Queue idioms

» As with stacks, must pull contents out of queue to view them.

while (!g.isEmpty()) {
do something with g.remove () ;

another idiom: Examining each element exactly once.

int size = g.size();

for (int 1 = 0; 1 < size; 1i++) {
do something with g.remove () ;
(including possibly re-adding it to the queue)

Why do we need the size variable

Implementing Queue ADT: Array Queue

» Keep track of the number of elements in the queue,
size.

» Enqueue at the back of the array (size).

» Dequeue at the front of the array (index 0).

what is bad about this implementation!?

what if we enqueue at 0 and dequeue at size!

Implementing Queue ADT:
Circular Array Queue

» Neat trick: use a circular array to
insert and remove items from a queue
in constant time.

» The idea of a circular array is that the
end of the array “wraps around” to the
start of the array.

Q: 0 size-1

(o
(@
o
D
—

frontT Tback

Circular Array Queue

Q:

0

size-1

blc|d|e]|f

r A

front ack

// Basic idea only!
enqueue (x) {

Q[back] = x;

back = (back + 1) % size
}

// Basic idea only!

dequeue () {
x = Q[front];
front = (front + 1) % size;

X,

Linked List Queue

b > C » d > e » f

! 1

front back

// Basic idea only!
enqueue (x) {
back.next = new Node (x) ;
back = back.next;

}

// Basic idea only!
dequeue () {
x = front.item;
front = front.next;
X,

Queue: Circular Array vs. Linked List

» Circular Array » Linked List
May waste unneeded space Always just enough space
or run out of space But more space per
Space per element element
excellent Operations very simple /
Operations very simple / fast
fast

» If we wanted add the ability to access the kth element to
our queue, could both implementations support this?

10

Exercise: Linked List Queue Implementation

» Implement a queue class that stores String values using a
singly linked list with both nodes to indicate the front and
the back of the queue as below. The queue should
implement the interface on the next slide.

front back

11

String Queue Interface

/**
* Interface for a queue of Strings.
*/
public interface StrQueue {
/**
* Tests if the queue is empty.
*/

public boolean isEmpty() ;

/**
* Inserts an element at the end of the queue.
*/

public void enqueue (String str);

/**
* Deletes and returns the element at the front of the qgueue.

* @return the deleted value; throws NoSuchElementException if empty
*/
public String dequeue() ;

12

Generic Queue Interface

/**
* Interface for a queue.
*/
public interface Queue<E> {
/**
* Tests 1f the queue is empty.
*/
public boolean isEmpty() ;

/**
* Inserts an element at the end of the queue.
*/

public void enqueue (E e);

/**
* Deletes and returns the element at the front of the qgueue.

* @dreturn the deleted value; throws NoSuchElementException if empty
*/
public E dequeue();

13

