CSE 373
Data Structures and Algorithms

Lecture 2: Queues




Queue ADT

» queue:A list with the restriction that insertions are done at
one end and deletions are done at the other
First-In, First-Out ("FIFO”)
Elements are stored in order of
insertion but don't have indexes.
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» basic queue operations:  peck
add (enqueue): Add an element to the back.
remove (dequeue): Remove the front element.
peek: Examine the element at the front.



Queues in computer science

» Operating systems:
queue of print jobs to send to the printer
queue of programs / processes to be run
queue of network data packets to send

» Programming:
modeling a line of customers or clients
storing a queue of computations to be performed in order

» Real world examples:
people on an escalator or waiting in a line
cars at a gas station (or on an assembly line)



Using Queues

add (value) | places given value at back of queue
remove () removes value from front of queue and returns it;
throws a NoSuchElementException if queue is empty
peek () returns front value from queue without removing it;
returns null if queue is empty
size () returns number of elements in queue
isEmpty () |returns true if queue has no elements
Queue<Integer> g = new <Integer>();

g.add (42) ;

g.add (-3) ; // T \\

qg.add (17) ; // front [42, -3, 17] back
System.out.println(g.remove()); // 42

IMPORTANT:When constructing a queue you must use a new
LinkedList object instead of a new Queue object.



Queue idioms

» As with stacks, must pull contents out of queue to view them.

while (!g.isEmpty()) {
do something with g.remove () ;

another idiom: Examining each element exactly once.

int size = g.size();

for (int 1 = 0; 1 < size; 1i++) {
do something with g.remove () ;
(including possibly re-adding it to the queue)

Why do we need the size variable



Implementing Queue ADT: Array Queue

» Keep track of the number of elements in the queue,
size.

» Enqueue at the back of the array (size).

» Dequeue at the front of the array (index 0).

what is bad about this implementation!?

what if we enqueue at 0 and dequeue at size!



Implementing Queue ADT:
Circular Array Queue

» Neat trick: use a circular array to
insert and remove items from a queue
in constant time.

» The idea of a circular array is that the
end of the array “wraps around” to the
start of the array.
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Circular Array Queue
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// Basic idea only!
enqueue (x) {

Q[back] = x;

back = (back + 1) % size
}

// Basic idea only!

dequeue () {
x = Q[front];
front = (front + 1) % size;

X,




Linked List Queue
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// Basic idea only!
enqueue (x) {
back.next = new Node (x) ;
back = back.next;

}

// Basic idea only!
dequeue () {
x = front.item;
front = front.next;
X,



Queue: Circular Array vs. Linked List

» Circular Array » Linked List
May waste unneeded space Always just enough space
or run out of space But more space per
Space per element element
excellent Operations very simple /
Operations very simple / fast
fast

» If we wanted add the ability to access the kth element to
our queue, could both implementations support this?
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Exercise: Linked List Queue Implementation

» Implement a queue class that stores String values using a
singly linked list with both nodes to indicate the front and
the back of the queue as below. The queue should
implement the interface on the next slide.

front back
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String Queue Interface

/**
* Interface for a queue of Strings.
*/
public interface StrQueue {
/**
* Tests if the queue is empty.
*/

public boolean isEmpty() ;

/**
* Inserts an element at the end of the queue.
*/

public void enqueue (String str);

/**
* Deletes and returns the element at the front of the qgueue.

* @return the deleted value; throws NoSuchElementException if empty
*/
public String dequeue() ;
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Generic Queue Interface

/**
* Interface for a queue.
*/
public interface Queue<E> {
/**
* Tests 1f the queue is empty.
*/
public boolean isEmpty() ;

/**
* Inserts an element at the end of the queue.
*/

public void enqueue (E e);

/**
* Deletes and returns the element at the front of the qgueue.

* @dreturn the deleted value; throws NoSuchElementException if empty
*/
public E dequeue();
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