
CSE 373
Data Structures and Algorithms

Lecture 2: Queues

Queue ADT

2

  queue: A list with the restriction that insertions are done at
one end and deletions are done at the other
  First-In, First-Out ("FIFO”)
  Elements are stored in order of

insertion but don't have indexes.
  Client can only add to the end of the

queue, and can only examine/remove
the front of the queue.

  basic queue operations:
  add (enqueue): Add an element to the back.
  remove (dequeue): Remove the front element.
  peek: Examine the element at the front.

Queues in computer science

3

  Operating systems:
  queue of print jobs to send to the printer
  queue of programs / processes to be run
  queue of network data packets to send

  Programming:
  modeling a line of customers or clients
  storing a queue of computations to be performed in order

  Real world examples:
  people on an escalator or waiting in a line
  cars at a gas station (or on an assembly line)

Using Queues

Queue<Integer> q = new LinkedList<Integer>();
q.add(42);
q.add(-3);
q.add(17); // front [42, -3, 17] back

System.out.println(q.remove()); // 42

  IMPORTANT: When constructing a queue you must use a new
LinkedList object instead of a new Queue object.

add(value) places given value at back of queue
remove() removes value from front of queue and returns it;

throws a NoSuchElementException if queue is empty
peek() returns front value from queue without removing it;

returns null if queue is empty
size() returns number of elements in queue
isEmpty() returns true if queue has no elements

4

Queue idioms

5

  As with stacks, must pull contents out of queue to view them.

 while (!q.isEmpty()) {
 do something with q.remove();
 }

  another idiom: Examining each element exactly once.

 int size = q.size();
 for (int i = 0; i < size; i++) {
 do something with q.remove();
 (including possibly re-adding it to the queue)
 }

  Why do we need the size variable

Implementing Queue ADT: Array Queue
  Keep track of the number of elements in the queue,
size.

  Enqueue at the back of the array (size).
  Dequeue at the front of the array (index 0).

  what is bad about this implementation?
  what if we enqueue at 0 and dequeue at size?

6

Implementing Queue ADT:
Circular Array Queue

  Neat trick: use a circular array to
insert and remove items from a queue
in constant time.

  The idea of a circular array is that the
end of the array “wraps around” to the
start of the array.

0

1

3

2

4

5

6

7

b	
 c	
 d	
 e	
 f	

Q:	
 0	
 size	
 -­‐	
 1	

front	
 back	

7

Circular Array Queue

8

b	
 c	
 d	
 e	
 f	

Q:	
 0	
 size	
 -­‐	
 1	

front	
 back	

// Basic idea only!
enqueue(x) {
 Q[back] = x;
 back = (back + 1) % size
}

// Basic idea only!
dequeue() {
 x = Q[front];
 front = (front + 1) % size;
 return x;
}

Linked List Queue

b	
 c	
 d	
 e	
 f	

front	
 back	

// Basic idea only!
enqueue(x) {
 back.next = new Node(x);
 back = back.next;
}

// Basic idea only!
dequeue() {
 x = front.item;
 front = front.next;
 return x;
}

9

Queue: Circular Array vs. Linked List

10

  Circular Array
  May waste unneeded space

or run out of space
  Space per element

excellent
  Operations very simple /

fast

  Linked List
  Always just enough space
  But more space per

element
  Operations very simple /

fast

  If	
 we	
 wanted	
 add	
 the	
 ability	
 to	
 access	
 the	
 kth	
 element	
 to	

our	
 queue,	
 could	
 both	
 implementa?ons	
 support	
 this?

Exercise: Linked List Queue Implementation

11

  Implement a queue class that stores String values using a
singly linked list with both nodes to indicate the front and
the back of the queue as below. The queue should
implement the interface on the next slide.

b	
 c	
 d	
 e	
 f	

front	
 back	

String Queue Interface

12

/**

 * Interface for a queue of Strings.
 */

public interface StrQueue {
 /**

 * Tests if the queue is empty.
 */

 public boolean isEmpty();

 /**
 * Inserts an element at the end of the queue.

 */
 public void enqueue(String str);

 /**

 * Deletes and returns the element at the front of the queue.
 * @return the deleted value; throws NoSuchElementException if empty

 */
 public String dequeue();

}

Generic Queue Interface

13

/**

 * Interface for a queue.
 */

public interface Queue<E> {
 /**

 * Tests if the queue is empty.
 */

 public boolean isEmpty();

 /**
 * Inserts an element at the end of the queue.

 */
 public void enqueue(E e);

 /**

 * Deletes and returns the element at the front of the queue.
 * @return the deleted value; throws NoSuchElementException if empty

 */
 public E dequeue();

}

