
CSE 373
Data Structures and Algorithms

Lecture 2: Queues

Queue ADT

2

  queue: A list with the restriction that insertions are done at
one end and deletions are done at the other
  First-In, First-Out ("FIFO”)
  Elements are stored in order of

insertion but don't have indexes.
  Client can only add to the end of the

queue, and can only examine/remove
the front of the queue.

  basic queue operations:
  add (enqueue): Add an element to the back.
  remove (dequeue): Remove the front element.
  peek: Examine the element at the front.

Queues in computer science

3

  Operating systems:
  queue of print jobs to send to the printer
  queue of programs / processes to be run
  queue of network data packets to send

  Programming:
  modeling a line of customers or clients
  storing a queue of computations to be performed in order

  Real world examples:
  people on an escalator or waiting in a line
  cars at a gas station (or on an assembly line)

Using Queues

Queue<Integer> q = new LinkedList<Integer>();
q.add(42);
q.add(-3);
q.add(17); // front [42, -3, 17] back

System.out.println(q.remove()); // 42

  IMPORTANT: When constructing a queue you must use a new
LinkedList object instead of a new Queue object.

add(value) places given value at back of queue
remove() removes value from front of queue and returns it;

throws a NoSuchElementException if queue is empty
peek() returns front value from queue without removing it;

returns null if queue is empty
size() returns number of elements in queue
isEmpty() returns true if queue has no elements

4

Queue idioms

5

  As with stacks, must pull contents out of queue to view them.

 while (!q.isEmpty()) {
 do something with q.remove();
 }

  another idiom: Examining each element exactly once.

 int size = q.size();
 for (int i = 0; i < size; i++) {
 do something with q.remove();
 (including possibly re-adding it to the queue)
 }

  Why do we need the size variable

Implementing Queue ADT: Array Queue
  Keep track of the number of elements in the queue,
size.

  Enqueue at the back of the array (size).
  Dequeue at the front of the array (index 0).

  what is bad about this implementation?
  what if we enqueue at 0 and dequeue at size?

6

Implementing Queue ADT:
Circular Array Queue

  Neat trick: use a circular array to
insert and remove items from a queue
in constant time.

  The idea of a circular array is that the
end of the array “wraps around” to the
start of the array.

0

1

3

2

4

5

6

7

b	 c	 d	 e	 f	
Q:	 0	 size	 -‐	 1	

front	 back	

7

Circular Array Queue

8

b	 c	 d	 e	 f	
Q:	 0	 size	 -‐	 1	

front	 back	

// Basic idea only!
enqueue(x) {
 Q[back] = x;
 back = (back + 1) % size
}

// Basic idea only!
dequeue() {
 x = Q[front];
 front = (front + 1) % size;
 return x;
}

Linked List Queue

b	 c	 d	 e	 f	

front	 back	

// Basic idea only!
enqueue(x) {
 back.next = new Node(x);
 back = back.next;
}

// Basic idea only!
dequeue() {
 x = front.item;
 front = front.next;
 return x;
}

9

Queue: Circular Array vs. Linked List

10

  Circular Array
  May waste unneeded space

or run out of space
  Space per element

excellent
  Operations very simple /

fast

  Linked List
  Always just enough space
  But more space per

element
  Operations very simple /

fast

  If	 we	 wanted	 add	 the	 ability	 to	 access	 the	 kth	 element	 to	
our	 queue,	 could	 both	 implementa?ons	 support	 this?

Exercise: Linked List Queue Implementation

11

  Implement a queue class that stores String values using a
singly linked list with both nodes to indicate the front and
the back of the queue as below. The queue should
implement the interface on the next slide.

b	 c	 d	 e	 f	

front	 back	

String Queue Interface

12

/**

 * Interface for a queue of Strings.
 */

public interface StrQueue {
 /**

 * Tests if the queue is empty.
 */

 public boolean isEmpty();

 /**
 * Inserts an element at the end of the queue.

 */
 public void enqueue(String str);

 /**

 * Deletes and returns the element at the front of the queue.
 * @return the deleted value; throws NoSuchElementException if empty

 */
 public String dequeue();

}

Generic Queue Interface

13

/**

 * Interface for a queue.
 */

public interface Queue<E> {
 /**

 * Tests if the queue is empty.
 */

 public boolean isEmpty();

 /**
 * Inserts an element at the end of the queue.

 */
 public void enqueue(E e);

 /**

 * Deletes and returns the element at the front of the queue.
 * @return the deleted value; throws NoSuchElementException if empty

 */
 public E dequeue();

}

