
CSE 373
Data Structures and Algorithms

Lecture 1: Introduction; ADTs; Stacks; Eclipse

Course objectives
  Learn basic data structures and algorithms

  data structures – how data is organized
  algorithms – unambiguous sequence of steps to compute

something
  algorithm analysis – determining how long an algorithm will

take to solve a problem

  Become a better software developer
  "Data Structures + Algorithms = Programs"

-- Niklaus Wirth, author of Pascal language

2

Abstract Data Types
  abstract data type (ADT): A specification of a collection of

data and the operations that can be performed on it.
  Describes what a collection does, not how it does it
  Described in Java with interfaces (e.g., List, Map, Set)
  Separate from implementation

  ADTs can be implemented in multiple ways by classes:
  ArrayList and LinkedList implement List
  HashSet and TreeSet implement Set
  LinkedList , ArrayDeque, etc. implement Queue
  Java messed up on Stack—there's no Stack interface, just a class.

3

List ADT
  An	
 ordered	
 collec*on	
 the	
 form	
 A0,	
 A1,	
 ...,	
 AN-­‐1,	
 where	
 N	
 is	
 the	

size	
 of	
 the	
 list	

  Opera*ons	
 described	
 in	
 Java's	
 List	
 interface	
 (subset):	

  ArrayList and LinkedList are implementations

4

add(elt, index)! inserts	
 the	
 element	
 at	
 the	
 specified	
 posi*on	

in	
 the	
 list	

remove(index)! removes	
 the	
 element	
 at	
 the	
 specified	
 posi*on	

get(index)! returns	
 the	
 element	
 at	
 the	
 specified	
 posi*on	

set(index, elt)! replaces	
 the	
 element	
 at	
 the	
 specified	
 posi*on	

with	
 the	
 specified	
 element	

contains(elt)! returns	
 true	
 if	
 the	
 list	
 contains	
 the	
 element	

size()! returns	
 the	
 number	
 of	
 elements	
 in	
 the	
 list	

Stack ADT

5

  stack: a list with the restriction that insertions/deletions
can only be performed at the top/end of the list
  Last-In, First-Out ("LIFO")
  The elements are stored in order of insertion,

but we do not think of them as having indexes.
  The client can only add/remove/examine

the last element added (the "top").

  basic stack operations:
  push: Add an element to the top.
  pop: Remove the top element.
  peek: Examine the top element.

Applications of Stacks
  Programming languages:

  method calls are placed onto a stack (call=push, return=pop)

  Matching up related pairs of things:
  find out whether a string is a palindrome
  examine a file to see if its braces { } and other operators

match

  Sophisticated algorithms:
  searching through a maze with "backtracking"
  many programs use an "undo stack" of previous operations

6

method3
return var
local vars
parameters

method2
return var
local vars
parameters

method1
return var
local vars
parameters

Class Stack

7

 Stack<Integer> s = new Stack<Integer>();
 s.push(42);
 s.push(-3);
 s.push(17); // bottom [42, -3, 17] top

 System.out.println(s.pop()); // 17

Stack<E>() constructs a new stack with elements of type E
push(value) places given value on top of stack
pop() removes top value from stack and returns it;

throws EmptyStackException if stack is empty
peek() returns top value from stack without removing it;

throws EmptyStackException if stack is empty
size() returns number of elements in stack
isEmpty() returns true if stack has no elements

Stack limitations/idioms
  Remember: You can’t loop over a stack like you do a list.

 Stack<Integer> s = new Stack<Integer>();
 ...
 for (int i = 0; i < s.size(); i++) {
 do something with s.get(i);
 }

  Instead, you pull contents out of the stack to view them.
  Idiom: Remove each element until the stack is empty.

 while (!s.isEmpty()) {
 do something with s.pop();
 }

8

Exercise

9

  Write a method symbolsBalanced that accepts a
String as a parameter and returns whether or not the
parentheses and the curly brackets in that String are
balanced as they would have to be in a valid Java program.
  Use a Stack to solve this problem.

Eclipse concepts

10

  workspace: a collection of projects
  stored as a directory

  project: a Java program
  must have your files in a project in order to be able to

compile, debug and run them
  by default stored in a directory in your workspace

  perspective: a view of your current project using a set of
pre-laid-out windows and menus
  Java perspective
  debugging perspective

