
1 of 3

CSE 373, Winter 2011 Practice Midterm

1. Big-Oh

Calculate the exact value of the variable sum after the following code fragment, in terms of variable n. Use
summation notation to compute a closed-form solution. Then use this value to give a tightly bounded Big-Oh analysis
of the runtime of the code fragment.

int sum = 0;
for (int i = 1; i <= n - 3; i++) {
 for (int j = 1; j <= i + 4; j += 2) {
 sum += 3;
 }

 sum++;
}

for (int i = 1; i <= 100; i++) {
 sum++;
}

2. Sorting
Consider the following array of int values.

[7, 1, 6, 12, -3, 8, 4, 21, 2, 30, -1, 9]

a. Write the contents of the array after 3 passes of the outermost loop of bubble sort.
b. Write the contents of the array after 4 passes of the outermost loop of selection sort.
c. Write the contents of the array after 5 passes of the outermost loop of insertion sort.
d. Write the contents of the array after all the recursive calls of merge sort have finished (before the very last merge

begins).
e. Write the contents of the array after the first partitioning of quick sort has finished (before recursive calls).

Assume that the first element is chosen as the pivot.

Please show your work. You do not have to write an entirely new array after each pass of the algorithm, but since the final
answer depends on every add/remove being done correctly, you may wish to show the array at various important stages
(i.e. after each pass or recursive call) to help earn partial credit in case of an error.

2 of 3

3. Trees and Heaps

Given the following String elements:

"m", "x", "z", "s", "d", "b", "i", "t", "r", "g", "w", "k", "h"

Draw the tree that results when all of the above elements are added (in the given order) to each of the following
initially empty data structures:

a. A binary search tree (BST).
i. Draw the tree that results after adding all the elements.
ii. Draw the tree that results after removing "k".
iii. Draw the tree that results after removing "t".
iv. Draw the tree that results after removing "x".
v. Draw the tree that results after removing "m".

b. An AVL tree. Draw the tree that results after inserting all elements. Draw a new tree each time a rotation is
necessary and say which kind of rotation was needed.

c. A minimum binary heap.
i. Draw the heap after adding all the elements.
ii. Perform three removes on the heap. Draw a new heap after each remove.

Please show your work.

3 of 3

4. Set Programming
Part A: Implementation

One of the operations commonly performed on sets is intersection. The intersection of two sets contains all the items
that the two sets have in common. The StringSet interface has been altered to have an intersect method.
This method takes a StringSet as a parameter and returns a new StringSet that contains all the Strings
that are in both the StringSet on which the method is called and the StringSet parameter. This method
should not alter in any way the StringSet on which the method is called or the StringSet parameter.

The StringTreeSet class must now implement the intersect method. The public method has been written
below. Write the recursive helper method intersect that this public method calls to populate the
intersection StringSet to contain all the Strings that both this StringTreeSet instance and the
other StringSet have. You may assume all of the other methods are implemented as discussed in lecture.

public interface StringSet {
 public boolean add(String value);
 public boolean contains(String value);
 public StringSet intersect(StringSet other);
 public void print();
 public boolean remove(String value);
 public int size();

}

// A binary search tree implementation of a Set for Strings.
public class StringTreeSet implements StringSet {
 protected StringTreeNode root;

 ...

 public StringSet intersect(StringSet other) {
 StringSet intersection = new StringTreeSet();
 intersect(root, other, intersection);
 return intersection;
 }

 // YOUR RECURSIVE INTERSECT HELPER SHOULD GO HERE

}

Part B: Analysis
Consider the following code fragment:

StringSet s3 = s1.intersect(s2);

Assuming that s2 has about half of the items that s1 has, give the worst case running time of this method call if
both s1 and s2 are of type StringTreeSet (i.e. a binary search tree implementation). Explain how you
arrived at this running time.

