CSE 373, Spring 2011 Midterm

1. Big-Oh (17 Points)

Calculate the approximate value of the variable sum after the following code fragment, in terms of variable n. Use
summation notation to compute a closed-form solution (ignore small errors caused by i not being evenly divisible by
2). Then use this value to give a tightly bounded Big-Oh analysis of the runtime of the code fragment.

int sum = 0O;

for

(int 1 = 1; 1 <= n; i++) {
for (int j = 1; 3 <= i; 3 += 2) {

sum += 4;

}

for (int k = -50; k <= -1; k++) {
sum--;

}

2. Sorting (18 Points)

Consider the follow array:

(32, 33, 5, 2, 14, -4, 22, 39, 34, -9]

Each of the following is a view of a sort in progress of the above array. Which sort is which? Each sort is used
exactly once.

Choose between bubble sort, selection sort, insertion sort, shell sort, merge sort, and quick sort.

If the sorting algorithm contains multiple loops, the array is shown after a few of passes of the outermost loop
has completed.

If the shorting algorithm is shell sort, Shell's increments are used for the gap (i.e. the gap gets reduced by
dividing by 2 each pass starting by dividing by the length of the array by 2).

If the sorting algorithm is merge sort, the array is shown after the recursive calls have completed on each
sub-part of the array.

If the sorting algorithm is quick sort, the algorithm chooses the first element as its pivot. For quick sort, the
array is shown before the recursive calls are made.

(2, 5, 32, 33, 14, -4, 22, 39, 34, -9]
Sorting Algorithm:
(2, 5, 14, 32, 33, -9, -4, 22, 34, 39]
Sorting Algorithm:

1 of3



c. [2, 5, -4, 14, 22, 32, -9, 33, 34, 39]

Sorting Algorithm:

d. REMOVED

e. [-9, 22, 5, 2, 14, -4, 32, 39, 34, 33]

Sorting Algorithm:

Sorting Algorithm:

3. AVL Trees (25 Points)

a.

Given the following list of integers:
16, 35,25,7,5,20,0

Draw the AVL tree that results when all of the above elements are added (in the given order) to an initially empty
AVL tree.

Please show your work. You do not have to draw an entirely new tree after each element is added, but since the
final answer depends on every add being done correctly, you may wish to show the tree at various important
stages to help earn partial credit in case of an error.

What is the balance factor of the root node of the AVL tree that you drew for part 3(a)?

Draw a valid AVL tree of integers for which a single remove would cause the tree to become imbalanced in one
of the two ways an insertion cannot cause an AVL tree to become imbalanced. For full credit, draw the valid
AVL tree before the remove and say which integer value would have to be removed to cause the AVL tree to
become imbalanced in a way not covered by the four insertion imbalance cases.

4. Heaps (20 Points)

Given the following integer elements:

85,25,45,11,3,30,1,6

Draw the tree representation of the heap that results when all of the above elements are added (in the given order)
to an initially empty minimum binary heap. Circle the final tree that results from performing the additions.

After adding all the elements, perform 3 removes on the heap. Circle the tree that results after the two elements
are removed.

Please show your work. You do not need to show the array representation of the heap. You do not have to draw an
entirely new tree after each element is added or removed, but since the final answer depends on every add/remove
being done correctly, you may wish to show the tree at various important stages to help earn partial credit in case of
an error.

20f3



5. Heap Programming (20 Points)

In lecture, we implemented a class called IntBinaryHeap, a minimum binary heap for integers. Add a method to
this class called nodesAtLevel that accepts as a parameter an integer representing a level in the heap and returns a
String representation of all the values at that level in the order they are found when read left to right. The root level
of the heap (i.e. the location of the minimum value) is level 0, level 1 contains the root's children, etc. An
IllegalArgumentException should be thrown if nodesAtLevel is called with a level of less than 0, a level
greater than the number of levels in the heap, or if the heap has no elements.

The following table shows some example calls to the nodesAtLevel and the Strings returned when an
IntBinaryHeap called heap is constructed and contains the values shown in Figure 1.

Call Returns
heap.nodesAtLevel (-1) throws exception
heap.nodesAtLevel (0) "-gn
heap.nodesAtLevel (1) "-4 2"
heap.nodesAtLevel (2) "33 5 32 22"
heap.nodesAtLevel (3) "39 34 14"
heap.nodesAtLevel (4) throws exception

Figure I Heap

Index 0 1 2 3 4 5 6 7 8 9 10
Value [0 -9 -4 2 33 5 32 22 39 34 14

Figure 2 Array Representation of Above Heap

The class declaration of IntBinaryHeap along with its fields is given below. You should write nodesAtLevel
as if your were adding it to this class. Recall that we implemented IntBinaryHeap with an array data structure
(represented by the array field) and that the root (i.e. the minimum value) was stored at index 1. For an example of
this representation, see Figure 1 and Figure 2.

You should take advantage of the fact IntBinaryHeap uses an array to implement your method in O(n) time. In
other words, your method should not be recursive.

public class IntBinaryHeap implements IntPriorityQueue ({
private static final int DEFAULT CAPACITY = 10;
private int[] array;
private int size;

// THE nodesAtLevel METHOD GOES HERE

Write your nodesAtLevel method on the next page.

30f3



