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Name: _____________________________________ 

Email address: _____________________________________ 

 

 

 

CSE 373 Winter 2012: Midterm #2 
(closed book, closed notes, NO calculators allowed) 

 

 

Instructions:  Read the directions for each question carefully before answering.  We may 

give partial credit based on the work you write down, so if time permits, show your work!  

Use only the data structures and algorithms we have discussed in class or that were 

mentioned in the book so far.   

 

Note: For questions where you are drawing pictures, please circle your final answer for any 

credit.   

 

 

Good Luck! 

 

Total:  65 points. Time: 50 minutes. 

 

 

Question Max Points Score 

1 12  

2 12  

3 6  

4 7  

5 11  

6 8  

7 9  

Total 65  
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1) [12 points total] Disjoint Sets 
The uptrees used to represent sets in the union-find algorithm can be stored in two n-element 

arrays.  The up array stores the parent of each node (or -1 if the node has no parent). The 

weight array stores the number of items in a set (its weight) if the node is the root 

(representative node) of a set. (If a node is not a root the contents of its location in the 

weight array are undefined – we don’t care what value it holds, it can be zero or any other 

number.)  

 

The following shows a collection of sets containing the numbers 1 through 14, without the 

weight array filled in: 

 

   1           2          3           4          5           6         7           8          9         10        11        12      

 

  10 

-1 

6 11 -1 -1 8 5 6 5 

13 

5 2 2 

 

    

  

        

 

a) [3 points] Draw a picture of the uptrees represented by the data in the up array shown 

above. 

 

 

 

 

 

 

 

 

 

 

up 

13 

weight 

14 
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1) (cont) 

b) [3 points] Now, draw a new set of uptrees to show the results of executing: 
union(find(1), find(11)); 

find(9); 

Regardless of how the trees from part a) were constructed, here assume that find uses path 

compression and that union uses union-by-size (aka union by weight). In case of ties in 

size, always make the higher numbered root point to the lower numbered one. Unioning a set 

with itself does nothing. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c) [2 points] Update the up and weight arrays at the top of the previous page to reflect the 

picture after part b). That is, fill in the contents of the weight array and update the contents 

of the up array. 

 

d) [2 points] What is the worst case big-O running time of a single find operation if union by 

size (aka union by weight) and path compression are used (assuming you are always passed 

roots as parameters)? N = total # of elements in all sets. (no explanation required) 

 

 

 
 

e) [2 points] Assuming that you are using union by size and path compression, how long 

would we expect a sequence of N-1 union operations and J find operations to take?   (N = 

total # of elements in all sets)   Express your answer in terms of big-O. (no explanation 

required) 
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2) [12 points total] Hashing:  

 

a) [8 points] Draw the contents of the two hash tables below after inserting the values 

shown.  Show your work for partial credit.  If an insertion fails, please indicate which 

values fail and attempt to insert any remaining values.  The hash function used is H(k) = 

k mod tablesize. 

 

Table 1:  Separate chaining,    Table 2: Quadratic Probing  

(where each bucket points to a linked  

list sorted from smallest to largest) 

 

Insert: 14,  23,  2, 19,  20,  5     Insert: 9,  1,  17 

 
 

 

 

 

 

 

 

 

 

 

b) [2 points] Give the load factor for each table: 

 

Load factor for Table 1:     Load factor for Table 2: 

 

 

0 

1 

3 

2 

4 

5 

 

 

 

 

 

 

0 

1 

3 

2 

4 

5 

6 

 

 

 

 

 

 7 
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2) (cont)  

 

 

c) [1 point] Table 1 will (circle one):  

 

i. gradually degrade in performance as more values are inserted 

ii. possibly fail to find a location on the next insertion   

iii. be fine on the next insertion,  but may fail to find a location on any 

insertions after that 

iv. none of the above  

 

 

d) [1 point] Table 2 will (circle one):  

 

 

i. gradually degrade in performance as more values are inserted 

ii. possibly fail to find a location on the next insertion  

iii. be fine on the next insertion,  but may fail to find a location on any 

insertions after that 

iv. none of the above  
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3) [6 points total] Graphs  

a) [2 points] Draw both the adjacency matrix and adjacency list representations of this 

graph.  For this problem, assume there are no implicit self loops (e.g. an edge from A 

to A).  That is, unless there is a self loop explicitly drawn in the graph, there should 

not be one in the representation. 

 
Adjacency Matrix:      Adjacency List: 

 

 

 

 

 

 

 

 

 

 

 

 

What is the worst case big-O running time of the following operations (use V and E rather 

than N in your answers).  No explanation is required. 

 

b) [2 points] Find the out-degree of a single vertex whose graph is stored in an 

adjacency matrix.  

 

 

 

 

 

c) [2 points] Find the in-degree of a single vertex whose graph is stored in an adjacency 

list.  

 

 

A 

B

C 

B

B 

C 

B

B 

D 

B

B 
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4) [7 points total] Graphs  

Use the following graph for the questions on this page: 

 
 

 

a) [2 points] If possible, list two valid topological orderings of the nodes in the graph 

above.  If there is only one valid topological ordering, list that one ordering.  If there 

is no valid topological ordering, state why one does not exist. 

 

 

 

 

 

 

 

 

b) [2 points] What is the worst case big-O running time of topological sort for a graph 

represented as an adjacency list? (note this refers to the un-optimized version first 

presented in lecture, a queue is NOT used) (use V and E rather than N in your 

answer)  No explanation is needed.  

 

 

 

 

 

 

c) [2 points] This graph is: (Circle all that are true): 

 

directed  weakly connected  undirected  

 

complete  acyclic    strongly connected 

 

 

d) [1 point] What is the in-degree of node B?  

 

A 

B 

B

B 

C 

B

B 

D 

B

B 

E 

B

B 

3 

8 

3 
5

4 

8 

1 
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5) [11 points total] Heaps 
a) [6 points] Draw the binary min heap that results from inserting 8, 7, 3, 2, 4, 6, 9, 5, 1 in 

that order into an initially empty binary min heap.  You do not need to show the array 

representation of the heap.  You are only required to show the final tree, although drawing 

intermediate trees may result in partial credit.  If you draw intermediate trees, please circle 

your final result for any credit. 
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b) [2 points] Draw the result of one deletemin call on your heap drawn at the end of part (a). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c) [3 points] For large values of N, would you expect an 8-heap to have better or worse 

locality than a binary heap? (you may assume that they are both min heaps) 

 

Circle the best answer: (circle one answer only) 

 

i. An 8-heap would tend to have better spatial locality than a binary heap on an insert 

operation. 

ii. A binary heap would tend to have better spatial locality than an 8-heap on an insert 

operation. 

iii. An 8-heap would tend to have better spatial locality than a binary heap on a deletemin 

operation. 

iv. A binary heap would tend to have better spatial locality than an 8-heap on a deletemin 

operation. 

v. I would expect the 8-heap and the binary heap to have very similar spatial locality. 
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6) [8 points] Memory Hierarchy & Locality:  Examine the code example below:   
 

a = 30; 

w[2] = 36; 

b = 14; 

c = 98; 

for (i = 1; i < 1000; i++) { 

 a = y[i] + y[4]; 

 j = z[3] + b; 

c = c + x[i+1] + a;  

} 

 

 

Considering only their use in the code segment above, for each of the following variables, 

indicate below what type of locality (if any) is demonstrated.  Please circle all that apply 

(you may circle more than one item for each variable): 

 
 

a spatial locality temporal locality no locality 

 

b spatial locality temporal locality no locality 

 

c spatial locality temporal locality no locality 

 

i spatial locality temporal locality no locality 

 

w spatial locality temporal locality no locality 

 

x spatial locality temporal locality no locality 

 

y spatial locality temporal locality no locality 

 

z spatial locality temporal locality no locality 
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7) [9 points total] Running Time Analysis:  

 Describe the most time-efficient way to implement the operations listed below.  

Assume no duplicate values and that you can implement the operation as a member 

function of the class – with access to the underlying data structure.   

 Then, give the tightest possible upper bound for the worst case running time for each 

operation in terms of N. **For any credit, you must explain why it gets this worst case 

running time. You must choose your answer from the following (not listed in any 

particular order), each of which could be re-used (could be the answer for more than one 

of a) -d)).     

O(N
2
), O(N

½
), O(N log N), O(N), O(N

2
 log N), O(N

5
), O(2

N
), O(N

3
),  

O(log N), O(1), O(N
4
), O(N

6
), O(N

15
), O(N (log N)

 2
), O(N

2
 (log N)

 2
) 

 

a) Given an open addressing hash table where linear probing is used to resolve collisions, 

what is the worst case run time of a rehash operation. Assume that original tablesize = N
3
 

(before re-hashing), new tablesize = N
5
 and there are currently N items in the hash table. 

Explanation: 

 

 

 

 

 

 

 

 

b) Given a binary min heap, what is the worst case runtime of a single insert operation.  

Explanation: 

 

 

 

 

 

 

 

 

 

c) Given a hash table that uses separate chaining where each bucket points to a linked list 

that is sorted from low to high, what is the worst case run time to find what the minimum 

value in the hash table is (you do not know what this value is ahead of time).  

Assume: tablesize N
4 

and there are currently N items in the hash table. Explanation: 

 

 

 

 

 

 

 

 

a) 

b) 

c) 


