CSE 373: Data Structures and Algorithms

Lecture 25: B-Trees

	CPU		Cycles to access:		
				Registers	1
				Cache	tens
				Main memory	hundreds
				Disk	millions
				ノ	

Hard Disks

- Large amount of storage but slow access
- Identifying a page takes a long time
 - Pays to read or write data in pages (i.e. blocks) of 0.5 8 KB in size

Algorithm Analysis

- Running time of disk-based data structures measured in terms of
 - computing time (CPU)
 - number of disk accesses
 - sequential reads
 - random reads
- Regular main-memory algorithms that work one data element at a time can not be "ported" to secondary storage in a straight forward way

Principles

Almost all of our data structure is on disk.

 Every time we access a node in the tree it amounts to a random disk access.

How can we address this problem?

M-ary Search Tree

Suppose we devised a search tree with branching

- M − 1 keys needed to decide branch to take
- Complete tree has height: $\Theta(\log_M n)$
- # Nodes accessed for search: $\Theta(\log_M n)$

B-Trees

Internal nodes store (up to) M - 1 keys

M = 7

Order property:

- subtree between two keys x and y contain leaves with values v such that $x \le v < y$

– Note the "≤"

 Leaf nodes contain up to L sorted values/ records.

Disk Friendliness

What makes B-trees disk-friendly?

- 1. Many keys stored in a node
 - Each node is one disk page/block.
 - All brought to memory/cache in one disk access.
- Internal nodes contain *only* keys;
 Only leaf nodes contain keys and actual *data*
 - Much of tree structure can be loaded into memory irrespective of data object size
 - Data actually resides in disk

What is limiting you from increasing the number of keys stored in each node?

Exercise: If disk block is 4000 bytes, key size is 20 bytes, pointer size is 4 bytes, and data/value size is 200 bytes, what should M and L be for our B-Tree?

B-Tree Structure Properties

- Root (special case)
 - has between 2 and M children (or could be a leaf)
- Internal nodes

Nodes are at least ½ full

- store up to M-1 keys
- have between floor(M/2) and M children
- Leaf nodes

Leaves are at least ½ full

- where data is stored
- contain between floor(L/2) and L data items

The tree is *perfectly balanced*!

B-Tree: Example

B-Tree with M = 4 (# pointers in internal node) and L = 5 (# data items in leaf)

Definition for later: "neighbor" is the next sibling to the left or right.

B-trees vs. AVL trees

Suppose we have $n = 10^9$ data items:

• Depth of AVL Tree: $log_2 10^9 = 30$

• Depth of B-Tree with M = 256, L = 256: $\log_{128} 10^9 = 4.3$

Building a B-Tree with Insertions

The empty B-Tree

$$M = 3$$
 $L = 3$

$$M = 3$$
 $L = 3$

Insertion Algorithm:

$$M = 5$$

Insertion Algorithm

- Insert the key in its leaf in sorted order
- 2. If the leaf ends up with *L+1* items, **overflow**!
 - Split the leaf into two nodes:
 [(L+1)/2] smaller keys
 [(L+1)/2] larger keys
 - Add the new child to the parent
 - If the parent ends up with M+1 children, overflow!

- 3. If an internal node ends up with *M+1* children, **overflow**!
 - Split the node into two nodes:
 [(M+1)/2] children with smaller keys
 [(M+1)/2] children with larger keys
 - Add the new child to the parent
 - If the parent ends up with M+1 items, overflow!
- 4. If the root ends up with *M+1* children, split it in two, and create new root with two children

This makes the tree deeper!

And Now for Deletion...

Are we okay?

M = 3 L = 3

Dang, not half full

Are you using that 14? Can I borrow it?

M = 3 L = 3

Are you using that 12?

Are you using the node18/30?

$$M = 3$$
 $L = 3$

Deletion Algorithm: Rotation Step

M = 5

This is *left* rotation. Similarly, *right* rotation

Deletion Algorithm: Merging Step

Deletion Algorithm

- 1. Remove the key from its leaf
- 2. If the leaf ends up with fewer than [*L*/2] items, **underflow**!
 - Try a left rotation
 - If not, try a right rotation
 - If not, merge, then check the parent node for underflow

Deletion Slide Two

- 3. If an internal node ends up with fewer than [*M*/2] children, **underflow**!
 - Try a left rotation
 - If not, try a right rotation
 - If not, merge, then check the parent node for underflow
- 4. If the root ends up with only one child, make the child the new root of the tree

This reduces the height of the tree!