CSE 373: Data Structures and
Algorithms

CPU

Cycles to access:

Registers 1
Cache tens
Main memory hundreds

T . A
Disk millions

Hard Disks

* Large amount of
storage but slow
access

* |dentifying a page
takes a long time

— Pays to read or write
data in pages (i.e.
blocks) of 0.5 — 8 KB
In size

on
From above — T

rite head

Algorithm Analysis

* Running time of disk-based data structures measured
in terms of

— computing time (CPU)
— number of disk accesses

e sequential reads
 random reads

* Regular main-memory algorithms that work one data
element at a time can not be "ported" to secondary
storage in a straight forward way

Principles

e Almost all of our data structure is on disk.

* Every time we access a node in the tree it
amounts to a random disk access.

* How can we address this problem?

M-ary Search Tree

« Suppose we devised a search tree with branching
factor M: Q.

C @ O O ®
0{‘0‘}0 0{‘0‘0 O C 0‘0‘}0 O 0‘0‘}0 A .‘.‘}.
* M -1 keys needed to decide branch to take

* Complete tree has height: ©(log,n)

* # Nodes accessed for search: ©(log,n)

B-Trees

Internal nodes store (up to) M - 1 keys

Order property:
— subtree between two keys s 7fiofo] | |
x and y contain leaves with
values vsuchthatx=sv<y
— Note the “<”

Leaf nodes contain
up to L sorted values/
records.

<x<1 2<x<2 21<x

Disk Friendliness

What makes B-trees disk-friendly?

1. Many keys stored in a node
. Each node is one disk page/block.
J All brought to memory/cache in one disk access.

2. Internal nodes contain only keys;
Only leaf nodes contain keys and actual data

. Much of tree structure can be loaded into memory
irrespective of data object size

. Data actually resides in disk

What is limiting you from increasing the number of keys stored in each node?

Exercise: If disk block is 4000 bytes, key size is 20 bytes, pointer size is 4 bytes, and
data/value size is 200 bytes, what should M and L be for our B-Tree?

B-Tree Structure Properties

* Root (special case)
— has between 2 and M children (or could be a leaf)

* Internal nodes Nodes are at least ¥ full
— store up to M-1 keys
— have between floor(M/2) and M children

° Leaf nodes Leaves are at least 2 full

— where data is stored
— contain between floor(L/2) and L data items

The tree is perfectly balanced !

B-Tree: Example

B-Tree with M = 4 (# pointers in internal node)
and L =5 (# data items in leaf)

Data objects... 12444 I

which we’ll ignore

in slides
20 k27 |34 50
1,AB.. | |6 12| |20 |27 |34 44 | 5@
2,GH..| |8 14| |22 |29 |38 47 |60 Al Jeaves
4, XY.. 9 16| |24 |32 |39 49 |70 atthe same
10 17 41 depth
19

Definition for later: “neighbor” is the next sibling to the left or right.

10

B-trees vs. AVL trees

Suppose we have n = 10° data items:

* Depth of AVL Tree: log, 10° = 30

* Depth of B-Tree with M = 256, L = 256:
log ,,10° =4.3

11

Building a B-Tree with Insertions

Insert(3)

The empty B-Tree

<
I

3

'\
I
w

>

Insert(18)

>

18

Insert(14)

>

14

18

12

14

Insert(30)

18

3

'\
]
w

>

14

18

18

14

30

30

13

SRR

Insert(32) Insert(36)
14 30 > |14 30 > 114 30 36
32
18 g 32
Insert(15)

3 18 32

M=3 [=3 14 30 36
15

14

!18 !32 !
3 18 32

14

30

36

Insert(16)

15

1 1
%
-1 1 1=0 1

>

!18 !32 !
3 18 32

14

30

36

15

16

15

I18 32

18

32

14

16

30

36

15

Insert(12,40,45,38

1

5‘
8 32

M=3 L=3
18
15 I
3 15
14 16

30

36

!15
3

)
')18
15

1

\>' 40
8 32

40

12

16

30

36

45

14

38

16

Insertion Algorithm:
The Overflow Step g

1101 0NN

IKlIK2lK3IK4IK5I IKllel IK4IK5l

Too big

M=5

Insertion Algorithm

Insert the key in its leaf in 3. If aninternal node ends up with
sorted order M+1 children, overflow!
If the leaf ends up with L+1 — Split the node into two nodes:

[(M+1)/2] children with smaller keys
| (M+1)/2] children with larger keys

— Add the new child to the parent
— If the parent ends up with M+1

items, overflow!

— Split the leaf into two nodes:
[(L+1)/2] smaller keys

L(L+1)/2] larger keys items, overflow!
— Add the new child to the parent | 4 |fthe root ends up with M+1
— If the parent ends up with M+1 children, split it in two, and
children, overflow! create new root with two
children

This makes the tree deb

12

16

14

3

And Now for Deletion...

18
!15]
3 15

Delete(32)
>

.

!15

40
32

!

;

'/‘18
15

18

40
36

40

30

38

45

18 40 3
30 36 45 12 16
38 14

19

18 I Delete(15) 18 I

>
! 15 I 36 Wl 40 ! 16 I 36 Wl 40
3 | |15 8 | |36 16 8 | |36

1 40 3

1 40

12 16 30 38 45 12 30 38 45

14 14

Are we okay?

Are you using that 147

M=3 L=3 Dang, not half full Can | borrow it?

20

12

14

3

18
!16 I
3 16

1

8 36

40

18
>
!14 I
3 14

1

8 36

40

30

38

45

12

16

30

38

45

21

12

16

3

18
!14 i
3 14

1

8 36

40

3

30

38

45

14

Delete(16) 18 I
>
I 14 I 36 [l 40

12

18

36

40

30

38

45

Are you using that 127

22

)

!

3

14

11
I14 I 36 40

18

36

40

12

30

38

45

3

]
w

11
>
I 36 @40

18

36

40

12

30

38

45

14

Are you using the node18/307?

23

18 II 36
>
! I 36 @40 ! 18 I
3 3 18

\4\0']
18 36 40 6 40

3

12 30 38 45 12 30 38 45

14 14

24

Delete(14)
36 II > 36 ‘I
! 18 I 40 I 18 I 40 I
3 18 6 40 18 6 40

3 3

3

12 30 38 45 12 30 38 45

14

25

Delete(18)
36 I > 36 I
! 18 I 40 I ! 18 I 40 I
3 18 6 40 3 30 6 40

3 3

12 30 38 45 12 38 45

26

12

3

36
!18]
3 30

Q

36

40

38

45

I > I/‘36
40 3

36

40

12

38

45

30

27

12

30

M

3

,)I/‘I%

36

I a
ol 1
40

38

43

36

3 40
12 38 45
30

28

3

36 @40
3 36 40
12 38 45
30

36 40
3 36 40
12 38 45
30
=3

29

Deletion Algorithm:
Rotation Step

i i-E RN NHE-RAHD

-I-N-N 00 EE-D

Too sma |

M=5 This is left rotation. Similarly, right rotation

Deletion Algorithm:
Merging Step

Too small ?

I i-EHR NHNRN

I DE-E-E-D

Deletion Algorithm

1. Remove the key from its leaf

2. If the leaf ends up with fewer
than [L/2] items, underflow!
— Try a left rotation

— If not, try a right rotation

— If not, merge, then check the
parent node for underflow

Deletion Slide Two

3. If an internal node ends up with fewer
than [M/2] children, underflow!
— Try a left rotation
— If not, try a right rotation

— If not, merge, then check the parent node
for underflow

4. If the root ends up with only one child,
make the child the new root of the tree \

This reduces the height
of the tree!

