CSE 373: Data Structures and
Algorithms



CPU

Cycles to access:

Registers 1
Cache tens
Main memory hundreds

T . A
Disk millions




Hard Disks

* Large amount of
storage but slow
access

* |dentifying a page
takes a long time

— Pays to read or write
data in pages (i.e.
blocks) of 0.5 — 8 KB
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Algorithm Analysis

* Running time of disk-based data structures measured
in terms of

— computing time (CPU)
— number of disk accesses

e sequential reads
 random reads

* Regular main-memory algorithms that work one data
element at a time can not be "ported" to secondary
storage in a straight forward way



Principles

e Almost all of our data structure is on disk.

* Every time we access a node in the tree it
amounts to a random disk access.

* How can we address this problem?



M-ary Search Tree

« Suppose we devised a search tree with branching
factor M: Q.
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* M -1 keys needed to decide branch to take

* Complete tree has height: ©(log,n)

* # Nodes accessed for search: ©(log,n)



B-Trees

Internal nodes store (up to) M - 1 keys

Order property:
— subtree between two keys s 7fiofo] | |
x and y contain leaves with
values vsuchthatx=sv<y
— Note the “<”

Leaf nodes contain
up to L sorted values/
records.
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Disk Friendliness

What makes B-trees disk-friendly?

1. Many keys stored in a node
. Each node is one disk page/block.
J All brought to memory/cache in one disk access.

2. Internal nodes contain only keys;
Only leaf nodes contain keys and actual data

. Much of tree structure can be loaded into memory
irrespective of data object size

. Data actually resides in disk

What is limiting you from increasing the number of keys stored in each node?

Exercise: If disk block is 4000 bytes, key size is 20 bytes, pointer size is 4 bytes, and
data/value size is 200 bytes, what should M and L be for our B-Tree?



B-Tree Structure Properties

* Root (special case)
— has between 2 and M children (or could be a leaf)

* Internal nodes Nodes are at least ¥ full
— store up to M-1 keys
— have between floor(M/2) and M children

° Leaf nodes Leaves are at least 2 full

— where data is stored
— contain between floor(L/2) and L data items

The tree is perfectly balanced !




B-Tree: Example

B-Tree with M = 4 (# pointers in internal node)
and L =5 (# data items in leaf)

Data objects... 12444 I

which we’ll ignore

in slides
20 k27 |34 50
1,AB.. | |6 12| |20 |27 |34 44 | 5@
2,GH..| |8 14| |22 |29 |38 47 |60 Al Jeaves
4, XY.. 9 16| |24 |32 |39 49 |70 atthe same
10 17 41 depth
19

Definition for later: “neighbor” is the next sibling to the left or right.

10



B-trees vs. AVL trees

Suppose we have n = 10° data items:

* Depth of AVL Tree: log, 10° = 30

* Depth of B-Tree with M = 256, L = 256:
log ,,10° =4.3
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Building a B-Tree with Insertions

Insert(3)

The empty B-Tree
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Insert(12,40,45,38
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Insertion Algorithm:
The Overflow Step g

1101 0NN
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Too big

M=5



Insertion Algorithm

Insert the key in its leaf in 3. If aninternal node ends up with
sorted order M+1 children, overflow!
If the leaf ends up with L+1 — Split the node into two nodes:

[(M+1)/2] children with smaller keys
| (M+1)/2] children with larger keys

— Add the new child to the parent
— If the parent ends up with M+1

items, overflow!

— Split the leaf into two nodes:
[(L+1)/2] smaller keys

L(L+1)/2] larger keys items, overflow!
— Add the new child to the parent | 4 |fthe root ends up with M+1
— If the parent ends up with M+1 children, split it in two, and
children, overflow! create new root with two
children

This makes the tree deb
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And Now for Deletion...
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18 I Delete(15) 18 I
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Are we okay?

Are you using that 147

M=3 L=3 Dang, not half full Can | borrow it?
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Delete(14)
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Delete(18)
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Deletion Algorithm:
Rotation Step

i i-E RN NHE-RAHD

-I-N-N 00 EE-D

Too sma |

M=5 This is left rotation. Similarly, right rotation



Deletion Algorithm:
Merging Step

Too small ?

I i-EHR NHNRN

I DE-E-E-D




Deletion Algorithm

1. Remove the key from its leaf

2. If the leaf ends up with fewer
than [L/2] items, underflow!
— Try a left rotation

— If not, try a right rotation

— If not, merge, then check the
parent node for underflow




Deletion Slide Two

3. If an internal node ends up with fewer
than [M/2] children, underflow!
— Try a left rotation
— If not, try a right rotation

— If not, merge, then check the parent node
for underflow

4. If the root ends up with only one child,
make the child the new root of the tree \

This reduces the height
of the tree!



