CSE 373: Data Structures and
Algorithms

Lecture 23: Disjoint Sets



Kruskal's Algorithm
Implementation

Kruskals():
sort edges in increasing order of length (e,, e, e, ..., e,).

T:={}L
fori=1tom

if e; does not add a cycle:
adde;to T.

return T.

* But how can we determine that adding e, to T won't add a cycle?



Disjoint-set Data Structure

* Keeps track of a set of elements partitioned
into a number disjoint subsets

— two sets are said to be disjoint if they have no
elements in common

* |nitially, each element e is a set in itself:

— e.g., { {el}' {ez}; {eg}; {64}, {65}, {e6}1 {67}}



Operations: Union

* Union(x, y) — Combine or merge two sets x and
y into a single set

— Before:

{{es, e, 5}, {e,, e,, &g}, {€g}, {€4, €cl}

— After Union(e, e,):

{{es, €5, €, €4, €6}, {ey, €y, €5}, {€9}}



Operations: Find

* Determine which set a particular element is in

— Useful for determining if two elements are in the same set

e Each set has a unigue name

— name is arbitrary; what matters is that find(a) == find(b) is
true only if a and b in the same set

— one of the members of the set is the "representative" (i.e.
name) of the set

- {{63, e5; e7, e1; e6} ’ {e4r e21 eg}; {69}}



Operations: Find

* Find(x) — return the name of the set containing
X.

— {{es, &5, €, €4, €6}, {€4, €,, €5}, {eo}}
— Find(e,) = e,
— Find(e,) = eg



Kruskal's Algorithm
Implementation (Revisited)

Kruskals():
sort edges in increasing order of length (e,, e, e, ..., e,).

initialize disjoint sets.
T:={}

fori=1tom
lete,=(u, v).
if find(u) != find(v)
union(find(u), find(v)).
adde;to T.

return T.

What does the disjoint set initialize to?

How many times do we do a union?

How many time do we do a find?

What is the total running time if we have n nodes and m edges?



Disjoint Sets with Linked Lists

* Approach 1: Create a linked list for each set.
— last/first element is representative

— cost of union? find?

* Approach 2: Create linked list for each set.
Every element has a reference to its
representative.

— last/first element is representative
— cost of union? find?



Disjoint Sets with Trees

* Observation: trees let us find many elements given
one root (i.e. representative)...

e |dea: if we reverse the pointers (make them point up
from child to parent), we can find a single root from
many elements...

e |dea: Use one tree for each subset. The name of the
class is the tree root.



Up-Tree for Disjoint Sets
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Roots are the names of each set. @



Union Operation

* Union(x, y) —assuming x and y roots,
point x toy.

Union(1, 7)
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Find Operation

* Find(x): follow x to root and return root

(1) (3)
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Simple Implementation

* Array of indices

Up[x] = 0 means
X is a root.

up | O




Union

Union(up[] : integer array, X,y : integer)
//precondition: x and y are roots//
up [x] =y

Constant Time!

14



Find

Find(up[] : integer array, x : integer) : integer {
//precondition: x is in the range 1 to size
1f uplx] ==
return x
else

return Find (up, upl[x])

 Exercise: write an iterative version of Find.




A Bad Case

@ @ @ @ Union(1,2)
@ @ @ Union(2,3)
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Improving Find

Can we do better? Yes!

1. Improve union so that find only takes ©(log n)
e Union-by-size
e Reduces complexity to ©(m log n + n)

2. Improve find so that it becomes even better!
e Path compression
e Reduces complexity to almost @(m + n)



Union by Rank

* Union by Rank (also called Union by Size)

— Always point the smaller tree to the root of the
larger tree

Union(1,7)
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Example Again
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6 "o Find(1) constant time

Union(1,2)



Improved Runtime for Find via
Union by Rank

* Depth of tree affects running time of Find

* Union by rank only increases tree depth if
depth were equal

e Results in O(log n) for Find




Elegant Array Implementation

KT A
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Union by Rank

Union(i,] : 1ndex) {
//1i and 7 are roots//
wi := weight[i];
wj := welight[]j];
1f wi < wj then
up (1] := J;
welght[]] := w1 + w];
else
uplj] :=1;
]

welght[1] := w1 + w];




Kruskal's Algorithm
Implementation (Revisited)

Kruskals():
sort edges in increasing order of length (e,, e, e, ..., e,).

initialize disjoint sets.
T:={}

fori=1tom
lete,=(u, v).
if find(u) != find(v)
union(find(u), find(v)).
adde;to T.

return T.
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Kruskal's Algorithm Running Time
(Revisited)

Assuming |E| = m edges and |V| = n nodes
Sort edges: O(m log m)

Initialization: O(n)

Finds: O(2 * m * log n) = O(m log n)
Unions: O(m)

Total running time: O (mlogn+n+mlogn+m)=0

(m log n)

— note: log n and log m are within a constant factor of one
another



Path Compression

* On a Find operation point all the nodes on the search
path directly to the root.
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Self-Adjustment Works
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Path Compression Exercise:

* Draw the resulting up tree after Find(e) with path
compression.




Path Compression Find

PC-Find (1 : 1ndex) {
r 1= 1;
while up[r] = 0 do //find root
r := uplr];
if i # r then //compress path
k = upli];
while k # r do
upli1i] := r;
1 := k;
k := uplk]
return (r)

}




Disjoint Union / Find
with Union By Rank and Path Comp.

* Worst case time complexity for a Union using Union

by Rank is ®(1) and for Find using Path Compression
is O(log n).

* Time complexity for m = n operations on n elements
is ®(m log™ n)
— log * is the number of times you need to apply the log
function before you get to a number <=1

— log * n <5 for all reasonable n. Essentially constant time
per operation!



Amortized Complexity

For disjoint union / find with union by rank and path
compression

— average time per operation is essentially a constant
— worst case time for a Find is ©(log n)

An individual operation can be costly, but over time the
average cost per operation is not

This means the bottleneck of Kruskal's actually becomes the
sorting of the edges



Other Applications of Disjoint Sets

* Good for applications in need of clustering
— cities connected by roads
— cities belonging to the same country
— connected components of a graph

* Forming equivalence classes (see textbook)

* Maze creation (see textbook)



