CSE 373: Data Structures and
Algorithms



Minimum spanning tree

* tree: a connected, directed acyclic graph

* spanning tree: a subgraph of a graph, which meets
the constraints to be a tree (connected, acyclic) and
connects every vertex of the original graph

* minimum spanning tree: a spanning tree with
weight less than or equal to any other spanning tree
for the given graph




Min. span. tree applications

* Consider a cable TV company laying cable to a new
neighborhood...

— Can only bury the cable only along certain paths, then a graph could
represent which points are connected by those paths.

— Some of paths may be more expensive (i.e. longer, harder to install), so
these paths could be represented by edges with larger weights.

— A spanning tree for that graph would be a subset of those paths that
has no cycles but still connects to every house.

e Similar situations: installing electrical wiring in a house,
installing computer networks between cities, building

roads between neighborhoods, etc.



Spanning Tree Problem

* |Input: An undirected graph G=(V, E). G is
connected.
e QOutput: T subset of E such that

—(V, T) is a connected graph
— (V, T) has no cycles



Spanning Tree Psuedocode

spanningTree():
pick random vertex v.
T:={}
spanningTree(v, T)
return T.

spanningTree(v, T):
mark v as visited.
for each neighbor v, of v where there is an edge from v to v;:
if v, is not visited
add edge {v, vjto T
spanningTree(v, T)
return T.



Example of Depth First Search

ST(1)




{1,2}

Example Step 2

ST(1)
ST(2)



{1,2}{2,7}

Example Step 3

ST(1)
ST(2)
ST(7)



Example Step 4

{1,2}{2,7} {7,5}



Example Step 5

{1,2}{2,7} {7,5} {5,4}

10



Example Step 6

{1,2}{2,7} {7,5} {5,4} {4,3}

11



Example Step 7

{1,2}{2,7} {7,5} {5,4} {4,3}

12



Example Step 8

{1,2}{2,7} {7,5} {5,4} {4,3}

13



Example Step 9

{1,2}{2,7} {7,5} {5,4} {4,3}

14



Example Step 10

{1,2}{2,7} {7,5} {5,4} {4,3}

15



Example Step 11

{1,2} {2,7} {7,5} {5,4} {4,3} {5,6}

16



Example Step 12

{1,2} {2,7} {7,5} {5,4} {4,3} {5,6}

17



Example Step 13

{1,2} {2,7} {7,5} {5,4} {4,3} {5,6}

18



Example Step 14

{1,2} {2,7} {7,5} {5,4} {4,3} {5,6}

19



Example Step 15

{1,2} {2,7} {7,5} {5,4} {4,3} {5,6}

ST(1)
ST(2)

20



Example Step 16

{1,2} {2,7} {7,5} {5,4} {4,3} {5,6}

ST(1)

21



Minimum Spanning Tree Problem

* |nput: Undirected Graph G = (V, E) and a cost
function C from E to non-negative real
numbers. C(e) is the cost of edge e.

* Output: A spanning tree T with minimum total
cost. Thatis: T that minimizes

C(T) = E C(e)



Observations about Spanning Trees

* For any spanning tree T, inserting an edge e, .,
not in T creates a cycle

e But

— Removing any edge e, from the cycle gives back
a spanning tree

—If e,,, has a lower cost than e_,; we have
progressed!



Find the MST




Two Different Approaches

Prim’s Algorithm Kruskals’s Algorithm

Looks familiar! Completely different!

25



Prim’s algorithm

Idea: Grow a tree by adding an edge from the
“known” vertices to the “unknown”
vertices. Pick the edge with the smallest
weight.

"

known




Prim’s algorithm

Starting from empty T,

choose a vertex at random

and initialize

V={A} T={}

/ A
10 5

27



Prim’s algorithm

Choose the vertex u notin V

such that edge weight from u 10 3
to a vertex in V is minimal 1

(greedy!)

V={AC) o 8 /C\ 3

r={(AC)}

28



Prim’s algorithm

Repeat until all vertices have been
chosen 0

V = {A,C,D} 10
T={(A.C), (C,D)} 1

29



Prim’s algorithm

V= {ACD,E}

T={(A,C), (C,D), (D,E)} 10 5

30



Prim’s algorithm

V= {A,C,D,E,B}

T={(A,C), (C,D), (D,E), (E,B)} 10 5

31



Prim’s algorithm

V= {A,C,D,E,B,F}

T={(A,C), (C,D), (D,E), (E,B), (B,F)} 10 5

32



Prim’s algorithm

V= {A,C,D,E,B,F,G}

T={(AC), (C.D). (D;E), (E,B), (BF), (E.G) }4¢ 5

33



Prim’s algorithm

Final Cost: 1+3+4+1+1+6=16

34



Prim's Algorithm Implementation

Prim():

for each vertex v: // Initialization
v's distance := infinity.
v's previous := none.
mark v as unknown.

choose random node v1.

v1's distance := 0.

List := {all vertices}.

T:={}

while List is not empty:
v := remove List vertex with minimum distance.
add edge {v, v's previous} to T.
mark v as known.
for each unknown neighbor n of v:
if distance(v, n) is smaller than n's distance:
n's distance := distance(v, n).
n's previous :=v.

return T.



Prim’s algorithm Analysis

 How is it different from Djikstra's algorithm?

* |f the step that removes unknown vertex with
minimum distance is done with binary heap
the running time is:

O([E]log |V])



Kruskal’s MIST Algorithm

ldea: Grow a forest out of edges that do not
create a cycle. Pick an edge with the
smallest weight.

G=(V,E)

(7,

™




Example of Kruskal 1

{7,4} {2,1} {7,5} {5,6} {5,4} {1,6} {2,7} {2,3} {3,4} {1,5}
0 1T 1 2 2 3 3 3 3 4

38



\(gi{

Example of Kruskal 2

2,1} {7,5} {5,6} {5,4} {1,6} {2,7} {2,3} {3,4} {1,5}
1 1 2 2 3 3 3 3 4

39



Example of Kruskal 2

\(gi&&ﬁﬁ} {5,6} {5,4} {1,6} {2,7}{2,3} {3,4} {1,5}
1 1 2 2 3 3 3 3 4

40



Example of Kruskal 3

\R(,;i 1} {R3} {5.6} {5,4} {1,6}{2,7} {2,3} {3,4} {15}
1 N 2 2 3 3 3 3 4



Example of Kruskal 4

W%\Wﬂ (1,6} {2,7} {2,3} {34} {1,5)
1 1 2 2 3 3 3 3 4

42



Example of Kruskal 5

WWW“ 6}{2,7}{2,3} {3.4} {1,5}
1 1 3 3 3 3 4

43



Example of Kruskal 6

W&Wﬁ%ﬂ (2,3} (3,4} {1,5}
1 1 2 2 3 3 3 3 4

44



Example of Kruskal 7

E{%WWZK{M (3,4} {1,5)
1 1 2 2 3 3 3 3 4

45



Example of Kruskal 7

WW@W@&Q {1 5)
N1 2\ 3\ 3\ 3\ 3 4

46



Example of Kruskal 8,9

1 1 2\ 2 3\ 3 3\ 3

47



Kruskal's Algorithm
Implementation

Kruskals():
sort edges in increasing order of length (e,, e, e, ..., e,).

T:={}L
fori=1tom

if e; does not add a cycle:
adde;to T.

return T.

* But how can we determine that adding e, to T won't add a cycle?



