CSE 373: Data Structures and Algorithms

Lecture 22: Graphs VI

Minimum spanning tree

- tree: a connected, directed acyclic graph
- spanning tree: a subgraph of a graph, which meets the constraints to be a tree (connected, acyclic) and connects every vertex of the original graph
- minimum spanning tree: a spanning tree with weight less than or equal to any other spanning tree for the given graph

Min. span. tree applications

- Consider a cable TV company laying cable to a new neighborhood...
 - Can only bury the cable only along certain paths, then a graph could represent which points are connected by those paths.
 - Some of paths may be more expensive (i.e. longer, harder to install), so these paths could be represented by edges with larger weights.
 - A spanning tree for that graph would be a subset of those paths that has no cycles but still connects to every house.
- Similar situations: installing electrical wiring in a house, installing computer networks between cities, building roads between neighborhoods, etc.

Spanning Tree Problem

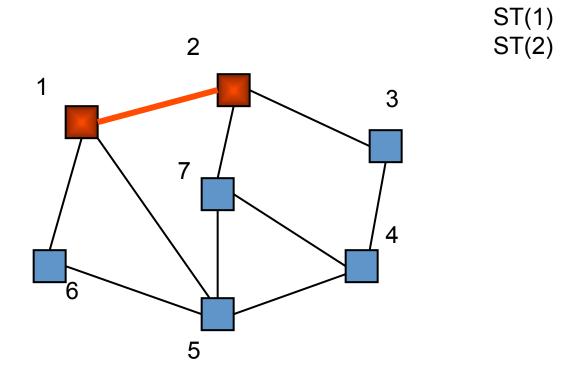
- Input: An undirected graph G = (V, E). G is connected.
- Output: T subset of E such that
 - -(V, T) is a connected graph
 - -(V, T) has no cycles

Spanning Tree Psuedocode

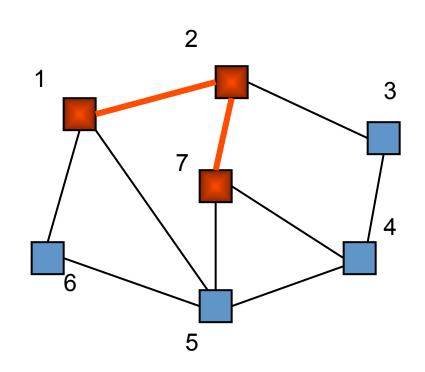
```
spanningTree():
  pick random vertex v.
  T := \{\}
  spanningTree(v, T)
  return T.
spanningTree(v, T):
  mark v as visited.
  for each neighbor v_i of v where there is an edge from v to v_i:
     if v<sub>i</sub> is not visited
       add edge \{v, v_i\} to T.
       spanningTree(v,, T)
  return T.
```

Example of Depth First Search

 ST(1)

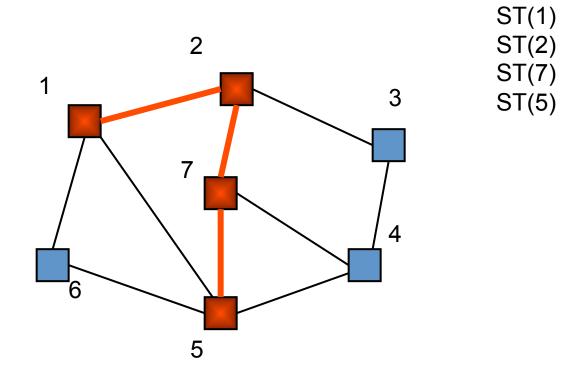


{1,2}

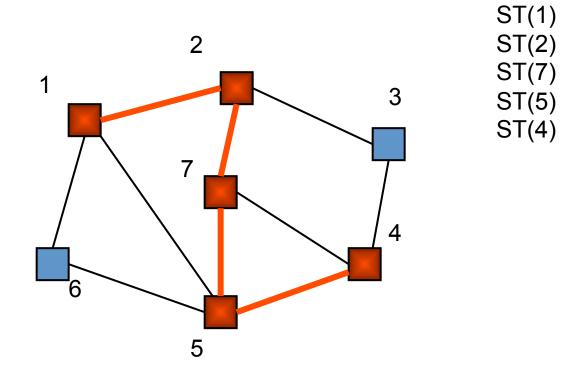


ST(1) ST(2) ST(7)

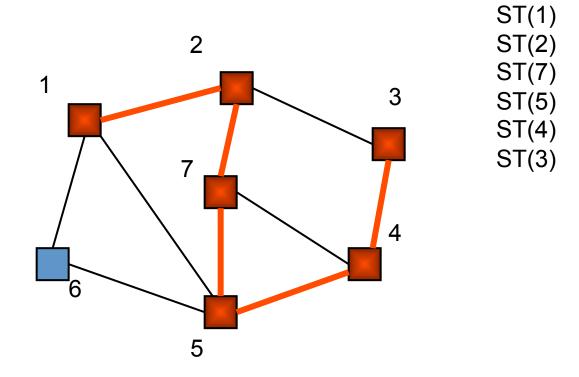
{1,2} {2,7}

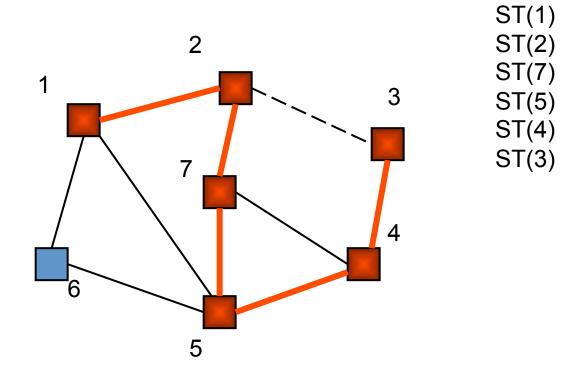


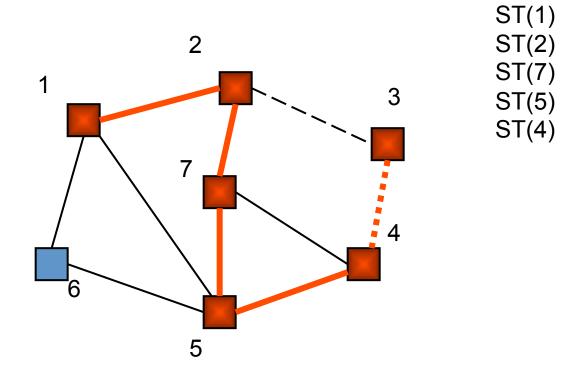
{1,2} {2,7} {7,5}

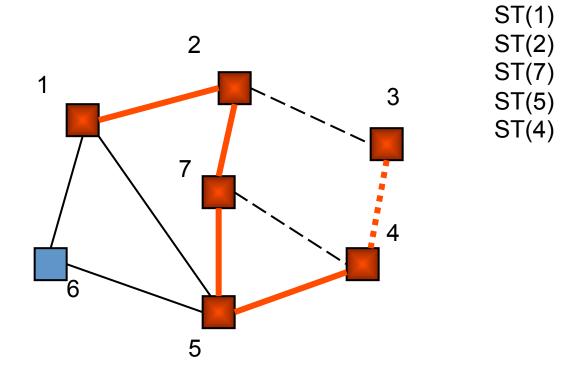


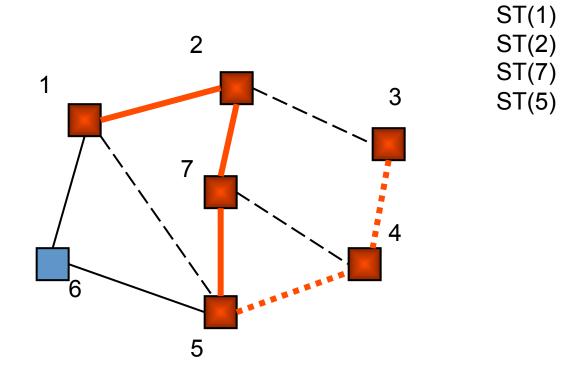
{1,2} {2,7} {7,5} {5,4}

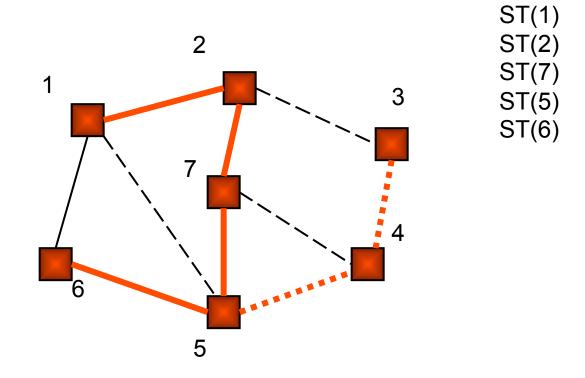


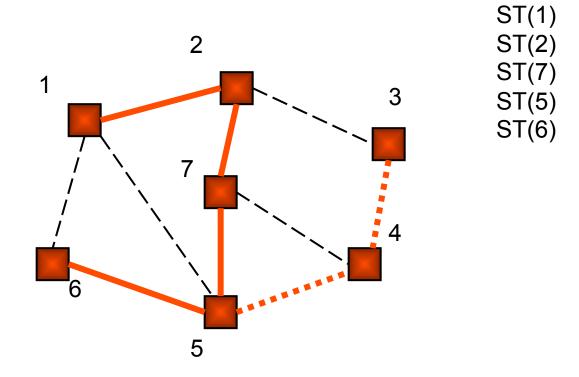


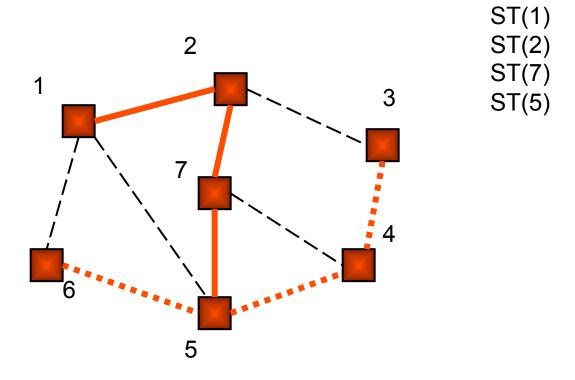


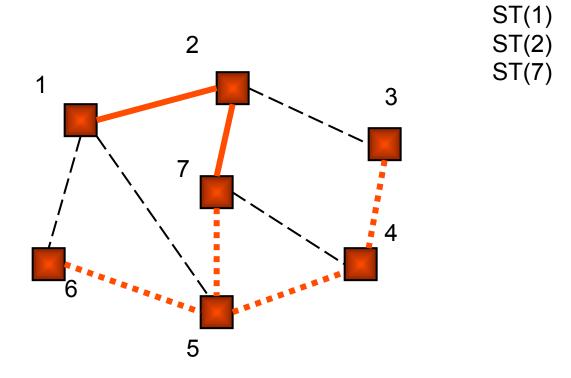


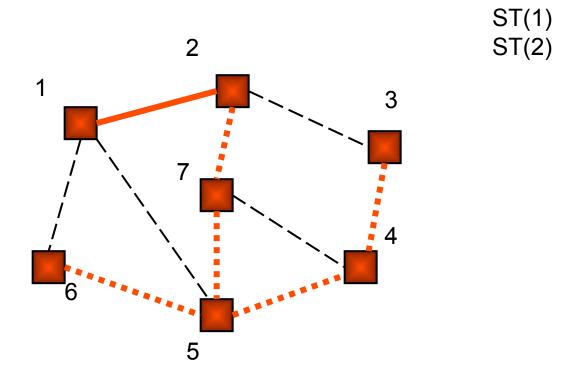












ST(1)

2

7

6

5

Minimum Spanning Tree Problem

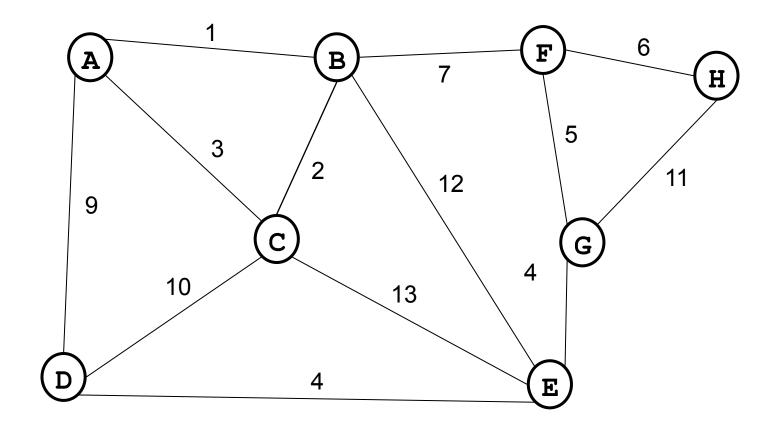
- Input: Undirected Graph G = (V, E) and a cost function C from E to non-negative real numbers. C(e) is the cost of edge e.
- Output: A spanning tree T with minimum total cost. That is: T that minimizes

$$C(T) = \sum_{e \in T} C(e)$$

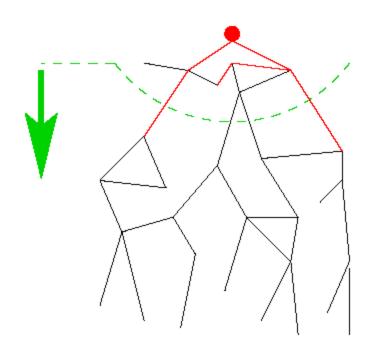
Observations about Spanning Trees

- For any spanning tree T, inserting an edge e_{new} not in T creates a cycle
- But
 - Removing any edge $e_{\it old}$ from the cycle gives back a spanning tree
 - If e_{new} has a lower cost than e_{old} we have progressed!

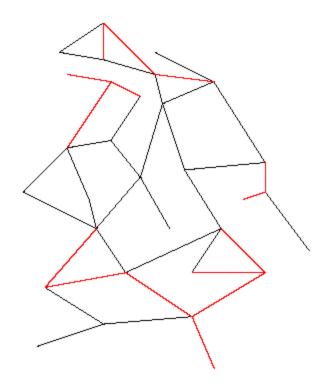
Find the MST



Two Different Approaches

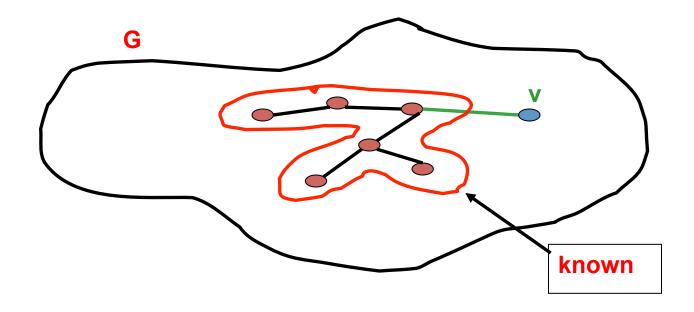


Prim's Algorithm
Looks familiar!



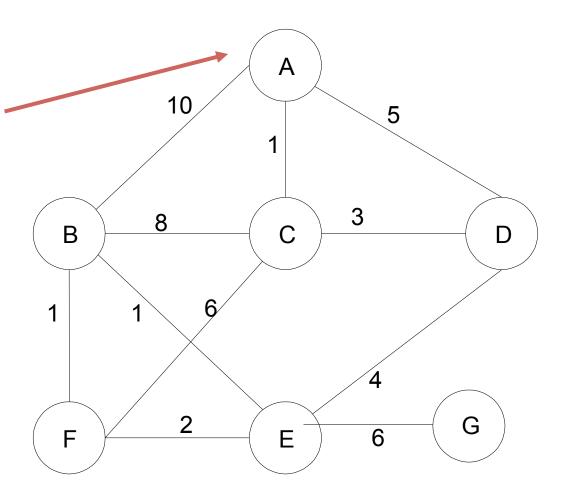
Kruskals's Algorithm
Completely different!

Idea: Grow a tree by adding an edge from the "known" vertices to the "unknown" vertices. Pick the edge with the smallest weight.



Starting from empty *T*, choose a vertex at random and initialize

$$V = \{A\}, T = \{\}$$

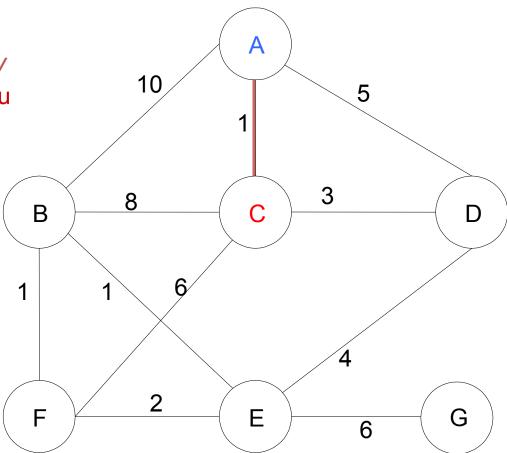


Choose the vertex **u** not in **V** such that edge weight from **u** to a vertex in **V** is minimal

(greedy!)

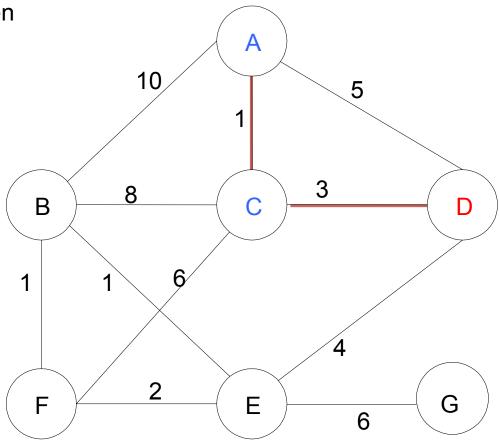
$$V = \{A,C\}$$

$$T = \{ (A,C) \}$$

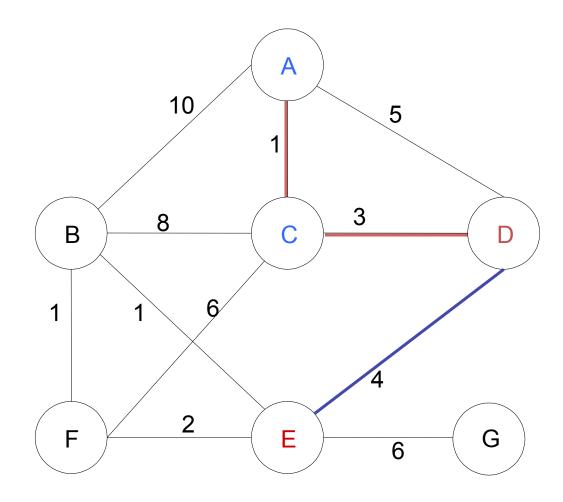


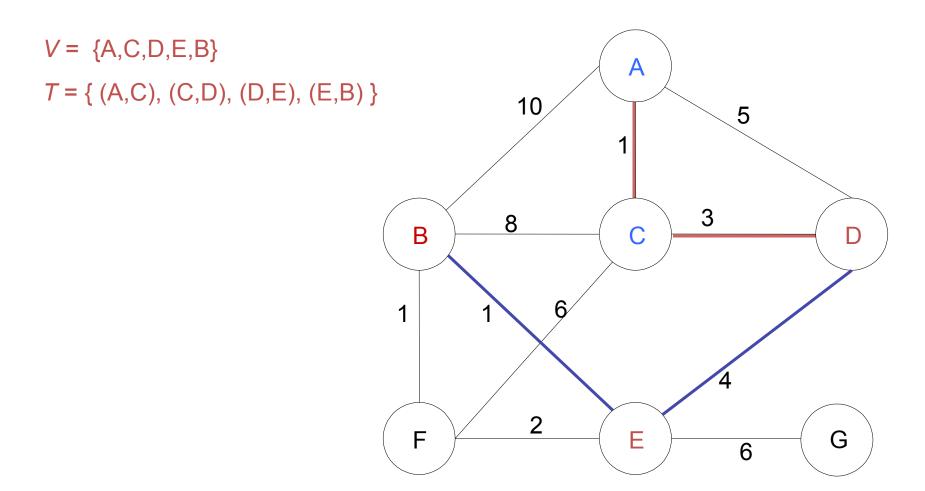
Repeat until all vertices have been chosen

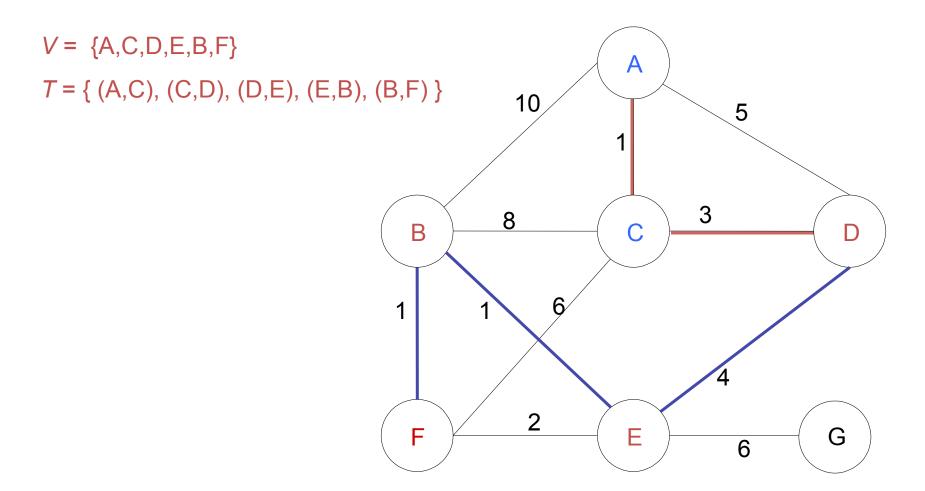
 $V = \{A,C,D\}$ $T = \{ (A,C), (C,D) \}$

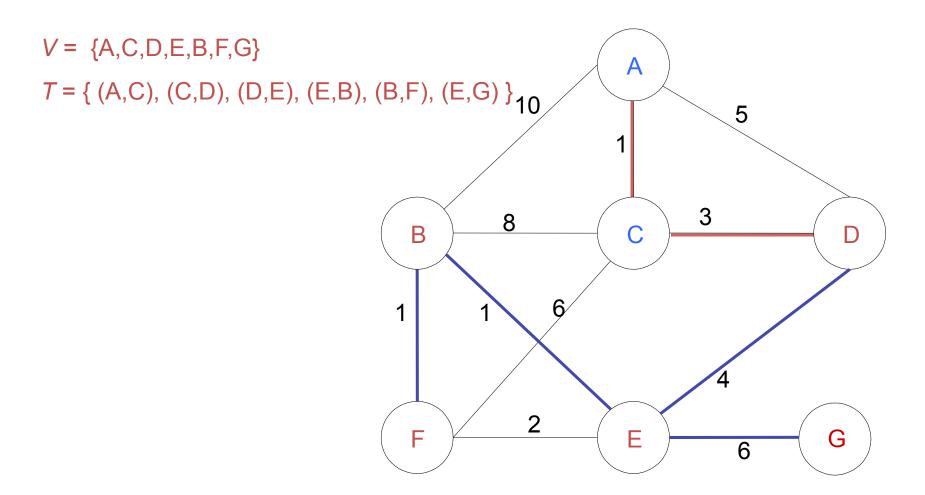


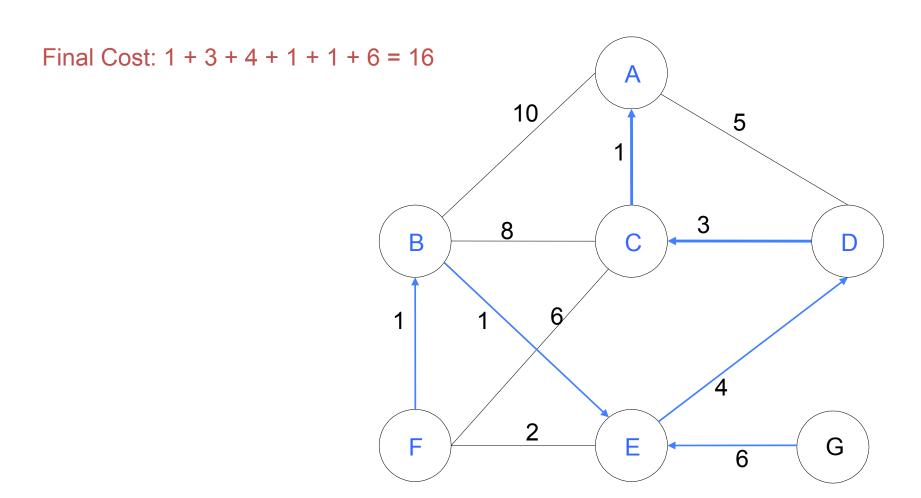
```
V = \{A,C,D,E\}
T = \{ (A,C), (C,D), (D,E) \}
```











Prim's Algorithm Implementation

```
Prim():
                                     // Initialization
  for each vertex v:
     v's distance := infinity.
     v's previous := none.
     mark v as unknown.
  choose random node v1.
  v1's distance := 0.
  List := {all vertices}.
  T := \{\}.
  while List is not empty:
     v := remove List vertex with minimum distance.
     add edge {v, v's previous} to T.
     mark v as known.
     for each unknown neighbor n of v:
       if distance(v, n) is smaller than n's distance:
          n's distance := distance(v, n).
          n's previous := v.
  return T.
```

Prim's algorithm Analysis

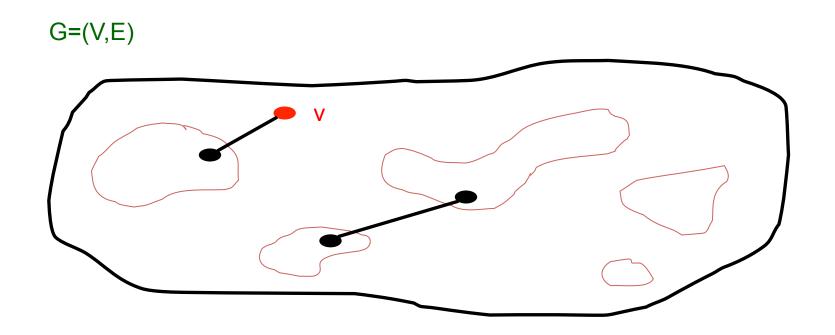
How is it different from Djikstra's algorithm?

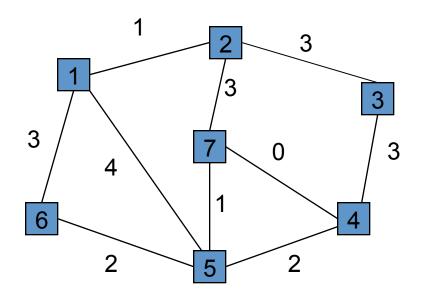
 If the step that removes unknown vertex with minimum distance is done with binary heap the running time is:

 $O(|E|\log |V|)$

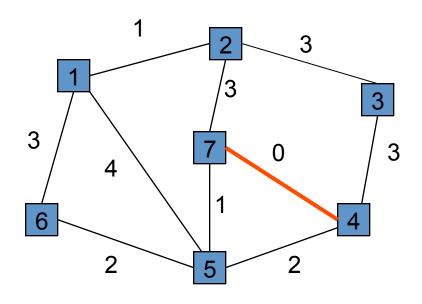
Kruskal's MST Algorithm

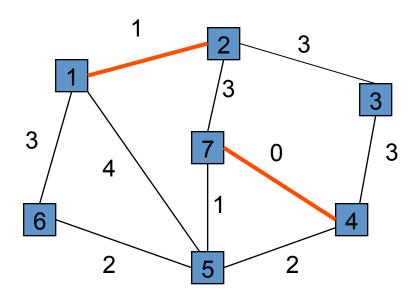
Idea: Grow a forest out of edges that do not create a cycle. Pick an edge with the smallest weight.

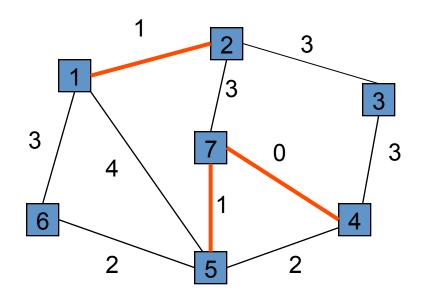


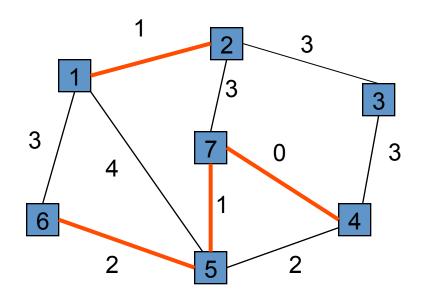


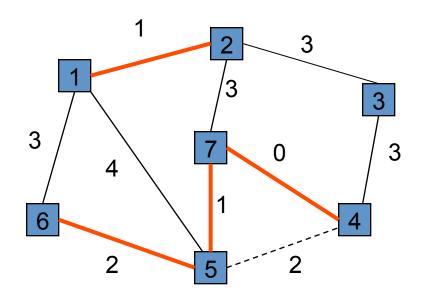
$$\{7,4\}$$
 $\{2,1\}$ $\{7,5\}$ $\{5,6\}$ $\{5,4\}$ $\{1,6\}$ $\{2,7\}$ $\{2,3\}$ $\{3,4\}$ $\{1,5\}$ 0 1 1 2 2 3 3 3 4

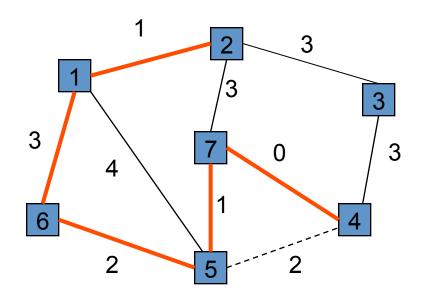


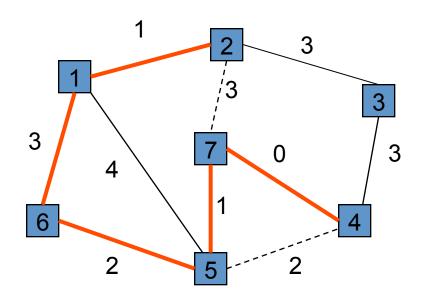


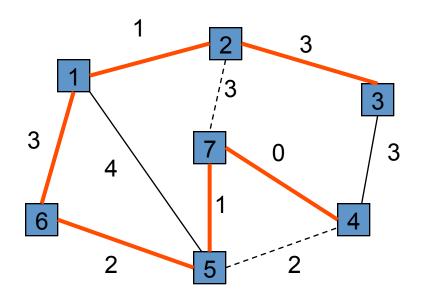


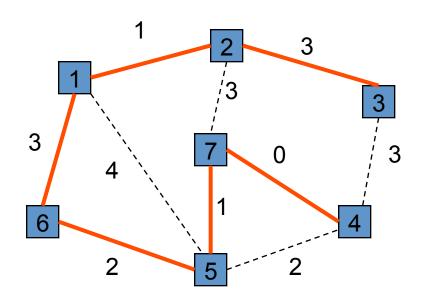


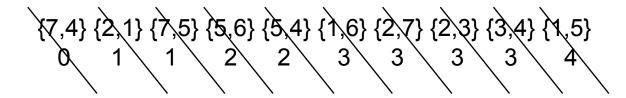












Kruskal's Algorithm Implementation

```
Kruskals():
    sort edges in increasing order of length (e<sub>1</sub>, e<sub>2</sub>, e<sub>3</sub>, ..., e<sub>m</sub>).
    T := {}.
    for i = 1 to m
        if e<sub>i</sub> does not add a cycle:
            add e<sub>i</sub> to T.
    return T.
```

But how can we determine that adding e_i to T won't add a cycle?