CSE 373: Data Structures and
Algorithms

Dijkstra's algorithm

* Dijkstra's algorithm: finds shortest (minimum weight) path between a
particular pair of vertices in a weighted directed graph with nonnegative
edge weights

— solves the "one vertex, shortest path" problem

— basic algorithm concept: create a table of information about the
currently known best way to reach each vertex (distance, previous
vertex) and improve it until it reaches the best solution

* inagraph where:

— vertices represent cities,

— edge weights represent driving distances between pairs of cities
connected by a direct road,

Dijkstra's algorithm can be used to find the shortest route between
one city and any other

Dijkstra pseudocode

Dijkstra(v1, v2):
for each vertex v: // Initialization
v's distance := infinity.
v's previous := none.
v1's distance := 0.
List := {all vertices}.

while List is not empty:
v := remove List vertex with minimum distance.
mark v as known.
for each unknown neighbor n of v:
dist := v's distance + edge (v, n)'s weight.

if dist is smaller than n's distance:
n's distance := dist.
n's previous :=v.

reconstruct path from v2 back to v,
following previous pointers.

Example: Initialization

Distance(source) = 0 ~ Distance (all vertices
but source) = ©

Pick vertex in List with minimum distance.

Example: Update neighbors
distance

Distance(B) = 2
Distance(D) = 1

Example: Remove vertex with
minimum distance

Pick vertex in List with minimum distance, i.e., D

Example: Update neighbors

Distance(C)=1+2=3
Distance(E)=1+2=3
Distance(F)=1+8=9 9 5
Distance(G)=1+4=5

Example: Continued...

Pick vertex in List with minimum distance (B) and update neighbors

Note : distance(D) not

F updated since D is
already known and

9 5 distance(E) not updated

since it is larger than

previously computed

Example: Continued...

Pick vertex List with minimum distance (E) and update neighbors

No updating

Example: Continued...

Pick vertex List with minimum distance (C) and update neighbors

Distance(F)=3+5=8

10

Example: Continued...

Pick vertex List with minimum distance (G) and update neighbors

Previous distance
Y 6 5

Distance(F) = min (8, 5+1) =6

11

Example (end)

Pick vertex not in S with lowest cost (F) and update neighbors

12

Correctness

e Dijkstra’s algorithm is a greedy algorithm
— make choices that currently seem the best
— locally optimal does not always mean globally optimal

* Correct because maintains following two properties:

— for every known vertex, recorded distance is shortest
distance to that vertex from source vertex

— for every unknown vertex v, its recorded distance is shortest
path distance to v from source vertex, considering only
currently known vertices and v

“Cloudy” Proof: The Idea

Next shortest path from
iInside the known cloud

Least cost node 0

- THE KNOWN
CLOUD

competitor
Source

* |f the path to v is the next shortest path, the path to v' must be at
least as long. Therefore, any path through v' to v cannot be shorter!

14

Dijkstra pseudocode

Dijkstra(v1, v2):
for each vertex v: // Initialization
v's distance := infinity.
v's previous := none.
v1's distance := 0.
List := {all vertices}.

while List is not empty:
v := remove List vertex with minimum distance.
mark v as known.
for each unknown neighbor n of v:
dist := v's distance + edge (v, n)'s weight.

if dist is smaller than n's distance:
n's distance := dist.
n's previous :=v.

reconstruct path from v2 back to v,
following previous pointers.

Time Complexity: Using List

The simplest implementation of the Dijkstra's algorithm
stores vertices in an ordinary linked list or array
— Good for dense graphs (many edges)

|V | vertices and |E| edges
Initialization O(|V|)
While loop O(| V)

— Find and remove min distance vertices O(|V|)
— Potentially |E| updates
* Update costs O(1)

* Reconstruct path O(|E|)

Total ime O(| V2| + |E|) = O(|V?])

16

Time Complexity: Priority Queue

For sparse graphs, (i.e. graphs with much less than |V?| edges)
Dijkstra's implemented more efficiently by priority queue

* [nitialization O(|V|) using O(|V|) buildHeap
* While loop O(|V])

— Find and remove min distance vertices O(log |V|) using O(log |V])
deleteMin

— Potentially |E| updates
» Update costs O(log |V|) using decreaseKey

* Reconstruct path O(|E|)

Total time O(|V|log|V| + |E|log|V]|) = O(|E|log|V])

« |V]|=0(|E|)assuming a connected graph

17

Dijkstra's Exercise

* Use Dijkstra's algorithm to determine the lowest cost path from vertex A
to all of the other vertices in the graph. Keep track of previous vertices so
that you can reconstruct the path later.

Minimum spanning tree

* tree: a connected, directed acyclic graph

* spanning tree: a subgraph of a graph, which meets
the constraints to be a tree (connected, acyclic) and
connects every vertex of the original graph

* minimum spanning tree: a spanning tree with
weight less than or equal to any other spanning tree
for the given graph

Min. span. tree applications

* Consider a cable TV company laying cable to a new
neighborhood...

— If it is constrained to bury the cable only along certain paths, then
there would be a graph representing which points are connected by
those paths.

— Some of those paths might be more expensive, because they are
longer, or require the cable to be buried deeper.

* These paths would be represented by edges with larger weights.

— A spanning tree for that graph would be a subset of those paths that

has no cycles but still connects to every house.

* There might be several spanning trees possible. A minimum spanning tree
would be one with the lowest total cost.

