CSE 373: Data Structures and
Algorithms

Depth-first search

* depth-first search (DFS): finds a path between
two vertices by exploring each possible path
as many steps as possible before backtracking

— often implemented recursively

DES template

Pseudo-code for depth-first
template:

dfs(Vertex v):
mark v as visited
for each unvisited neighbor v; of v
where there is an edge from v to v;:
if(Iv.visited)
dfs(v;)

Breadth-first search

* breadth-first search (BFS): finds a path
between two nodes by taking one step down
all paths and then immediately backtracking

— often implemented by maintaining
a list or queue of vertices to visit

— BFS always returns the path with
the fewest edges between the start (e) (© (&)

and the goal vertices ofoXo

BFS example

e All BFS paths from A to others (assumes ABC edge order)
— A
— A->B
— A->C
— A->E
— A>B->D
— A>B->F
— A>C->G

 What are the paths that BFS did not find?

BFS pseudocode

* Pseudo-code for breadth-first search:
bfs(vl, v2):
List :={v1}.
mark v1 as visited.

while List not empty:
v := List.removefFirst().
ifvisv2:
path is found.

for each unvisited neighbor v; of v
where there is an edge from v to v;:

mark v, as visited.
List.addLast(v,).

path is not found.

BFS observations

optimality:
— in unweighted graphs, optimal. (fewest edges = best)

— In weighted graphs, not optimal.
(path with fewest edges might not have the lowest weight)

disadvantage: harder to reconstruct what the actual path is once
you find it

— conceptually, BFS is exploring many possible paths in parallel, so it's
not easy to store a Path array/list in progress

observation: any particular vertex is only part of one partial path at
a time
— We can keep track of the path by storing predecessors for each vertex
(references to the previous vertex in that path)

* Using BFS, find a path from BOS to SFO.

Another BFS example

DFS, BFS runtime

What is the expected runtime of DFS, in terms of the
number of vertices V and the number of edges E ?

What is the expected runtime of BFS, in terms of the
number of vertices V and the number of edges E ?

Answer: O(| V| + | E|)

— each algorithm must potentially visit every node and/or
examine every edge once.

— why not O(| V| * |E|) ?

What is the space complexity of each algorithm?

Implementing graphs

Implementing a graph

If we wanted to program an actual data structure to represent a graph,
what information would we need to store?

— for each vertex?

— for each edge?

What kinds of questions
would we want to be able to
answer quickly:

2
!
— about a vertex?
— about its edges / neighbors? N
— about paths?
— about what edges exist in the graph?

~
)
5

We'll explore three common graph implementation strategies:
— edge list, adjacency list, adjacency matrix

Edge list

edge list: an unordered list of all edges in the graph

advantages
— easy to loop/iterate over all edges

disadvantages 1

/

— hard to tell if an edge
exists from A to B

— hard to tell how many edges
a vertex touches (its degree)

2

/

V4

111]12|2|3|5|5]|5]|7 N

~
.
5

5|6 |7(3|4|6|7|4)|4

Adjacency matrix

adjacency matrix: an n x n matrix where:

— the nondiagonal entry a; is the number of edges joining vertex i and

vertex j (or the weight 01‘ the edge joining vertex i and vertex j)

— the diagonal entry g, corresponds to the number of loops (self-
connecting edges) at vertex i

&
v

|
= O O~ N
oo~ OO
= =0 = O O

O O~ QO
oo O =

13

Pros/cons of Adj. matrix

* advantage: fast to tell whether edge exists between
any two vertices i and j (and to get its weight)

e disadvantage: consumes a lot of memory on sparse
graphs (ones with few edges)

P (2100 10
{4 1 0 10 1 0O
01 0100
/5 0010 11
RN 1 1 0 1 0 0O
A \o0 0 0 1 0 0/

Adjacency matrix example

* The graph at right has the following adjacency matrix:

NO Ok, WON -

— How do we figure out the degree of a given vertex?

— How do we find out whether an edge exists from A to B?

— How could we look for loops in the graph?

1

2

/

/

14

1 2 345 67

0(1{]0/0]1|1]0
1170]11]0/0]0 |1
0/1/0{1]0|0]0
0/(0|1|0|1|0]1
1170/0]1]10]1]1
110[{0]0[1]0]0
0101100

6

~
.
5

Adjacency lists

e adjacency list: stores edges as individual linked lists of
references to each vertex's neighbors

— generally, no information needs to be stored in the edges,
only in nodes, these arrays can simply be pointers to other
nodes and thus represent edges with little memory
requirement

12 —» 3(1

1) —
1 4(10)— 3(3) =
2 0@ —* 506 —
3| 4(@2) —» 6(4) —» 50B8) —¥ 2(2)

Pros/cons of adjacency list

advantage: new nodes can be added to the graph easily, and they can be
connected with existing nodes simply by adding elements to the
appropriate arrays; "who are my neighbors" easily answered

disadvantage: determining whether an edge exists between two nodes
requires O(n) time, where n is the average number of incident edges per
node

3|42 | 64 —» 58 —¥ 2(2)

Adjacency list example

 The graph at right has the following adjacency list:

NO OO, WON -

— How do we figure out the degree of a given vertex?

— How do we find out whether an edge exists from A to B?

— How could we look for loops in the graph?

\ 4 \ 4

2

1

/

\ 4 \ 4

\ 4

\ 4 \ 4 \ 4 \ 4 \ 4 \ 4 \ 4

\ 4 \ 4 \ 4 \ 4 \ 4 \ 4 A 4

B[O INWIN

Q| O |= | N [|=] O

\ 4

/\
(N
>

Runtime table

= n vertices, m edges
= no parallel edges Edge Adjacency Adjacency
= NO Self'IOOpS List List Matrix
Space n+m n+m n?

Finding all adjacent
vertices to v m deg(v) n
Determining if v is min(deg(v), deg

. m 1
adjacent to w (w))
inserting a vertex 1 1 n2
inserting an edge 1 1 1
removing vertex v m deg(v) n?
removing an edge m deg(v) 1

