CSE 373: Data Structures and
Algorithms



Depth-first search

* depth-first search (DFS): finds a path between
two vertices by exploring each possible path
as many steps as possible before backtracking

— often implemented recursively




DES template

Pseudo-code for depth-first
template:

dfs(Vertex v):
mark v as visited
for each unvisited neighbor v; of v
where there is an edge from v to v;:
if( Iv.visited )
dfs(v;)




Breadth-first search

* breadth-first search (BFS): finds a path
between two nodes by taking one step down
all paths and then immediately backtracking

— often implemented by maintaining
a list or queue of vertices to visit

— BFS always returns the path with
the fewest edges between the start (e) (© (&)

and the goal vertices ofoXo




BFS example

e All BFS paths from A to others (assumes ABC edge order)
— A
— A->B
— A->C
— A->E
— A>B->D
— A>B->F
— A>C->G

 What are the paths that BFS did not find?



BFS pseudocode

* Pseudo-code for breadth-first search:
bfs(vl, v2):
List :={v1}.
mark v1 as visited.

while List not empty:
v := List.removefFirst().
ifvisv2:
path is found.

for each unvisited neighbor v; of v
where there is an edge from v to v;:

mark v, as visited.
List.addLast(v,).

path is not found.



BFS observations

optimality:
— in unweighted graphs, optimal. (fewest edges = best)

— In weighted graphs, not optimal.
(path with fewest edges might not have the lowest weight)

disadvantage: harder to reconstruct what the actual path is once
you find it

— conceptually, BFS is exploring many possible paths in parallel, so it's
not easy to store a Path array/list in progress

observation: any particular vertex is only part of one partial path at
a time
— We can keep track of the path by storing predecessors for each vertex
(references to the previous vertex in that path)



* Using BFS, find a path from BOS to SFO.

Another BFS example




DFS, BFS runtime

What is the expected runtime of DFS, in terms of the
number of vertices V and the number of edges E ?

What is the expected runtime of BFS, in terms of the
number of vertices V and the number of edges E ?

Answer: O(| V| + | E|)

— each algorithm must potentially visit every node and/or
examine every edge once.

— why not O(| V| * |E|) ?

What is the space complexity of each algorithm?



Implementing graphs



Implementing a graph

If we wanted to program an actual data structure to represent a graph,
what information would we need to store?

— for each vertex?

— for each edge?

What kinds of questions
would we want to be able to
answer quickly:
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— about a vertex?
— about its edges / neighbors? N
— about paths?
— about what edges exist in the graph?

~
)
5

We'll explore three common graph implementation strategies:
— edge list, adjacency list, adjacency matrix



Edge list

edge list: an unordered list of all edges in the graph

advantages
— easy to loop/iterate over all edges

disadvantages 1

/

— hard to tell if an edge
exists from A to B

— hard to tell how many edges
a vertex touches (its degree)
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Adjacency matrix

adjacency matrix: an n x n matrix where:

— the nondiagonal entry a; is the number of edges joining vertex i and

vertex j (or the weight 01‘ the edge joining vertex i and vertex j)

— the diagonal entry g, corresponds to the number of loops (self-
connecting edges) at vertex i
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Pros/cons of Adj. matrix

* advantage: fast to tell whether edge exists between
any two vertices i and j (and to get its weight)

e disadvantage: consumes a lot of memory on sparse
graphs (ones with few edges)
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Adjacency matrix example

* The graph at right has the following adjacency matrix:

NO Ok, WON -

— How do we figure out the degree of a given vertex?

— How do we find out whether an edge exists from A to B?

— How could we look for loops in the graph?

1

2

/

/

14

1 2 345 67

0(1{]0/0]1|1]0
1170]11]0/0]0 |1
0/1/0{1]0|0]0
0/(0|1|0|1|0]1
1170/0]1]10]1]1
110[{0]0[1]0]0
0101100

6

~
.
5




Adjacency lists

e adjacency list: stores edges as individual linked lists of
references to each vertex's neighbors

— generally, no information needs to be stored in the edges,
only in nodes, these arrays can simply be pointers to other
nodes and thus represent edges with little memory
requirement
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Pros/cons of adjacency list

advantage: new nodes can be added to the graph easily, and they can be
connected with existing nodes simply by adding elements to the
appropriate arrays; "who are my neighbors" easily answered

disadvantage: determining whether an edge exists between two nodes
requires O(n) time, where n is the average number of incident edges per
node
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Adjacency list example

 The graph at right has the following adjacency list:

NO OO, WON -

— How do we figure out the degree of a given vertex?

— How do we find out whether an edge exists from A to B?

— How could we look for loops in the graph?
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Runtime table

= n vertices, m edges
= no parallel edges Edge Adjacency Adjacency
= NO Self'IOOpS List List Matrix
Space n+m n+m n?

Finding all adjacent
vertices to v m deg(v) n
Determining if v is min(deg(v), deg

. m 1
adjacent to w (w))
inserting a vertex 1 1 n2
inserting an edge 1 1 1
removing vertex v m deg(v) n?
removing an edge m deg(v) 1




