CSE 373: Data Structures and
Algorithms

Directed graphs

* directed graph (digraph): edges are one-way
connections between vertices

Trees as Graphs

* Every tree is a graph with
some restrictions:

—the tree is directed

—the tree is acyclic

—there is exactly one
directed path from the
root to every node

More terminology

* degree: number of edges touching a vertex
— example: W has degree 4
— what is the degree of X? of Z? a

e adjacent vertices: connected
directly by an edge

* If graphis directed, a vertex has a
separate in/out degree

Graph questions

* Are the following graphs directed or not
directed?

— Buddy graphs of instant messaging programs?
(vertices = users, edges = user being on another's buddy
list)

— bus line graph depicting all of Seattle's bus stations and
routes

— graph of movies in which actors have appeared together

* Are these graphs potentially cyclic? Why or
why not?

Graph exercise

* Consider a graph of instant messenger buddies.
— What do the vertices represent? What does an edge represent?
— Is this graph directed or undirected? Weighted or unweighted?
— What does a vertex's degree mean? In degree? Out degree?
— Can the graph contain loops? cycles?

* Consider this graph data:
— Jessica's buddy list: Meghan, Alan, Martin.
— Meghan's buddy list: Alan, Lori.
— Toni's buddy list: Lori, Meghan.
— Martin's buddy list: Lori, Meghan.
— Alan's buddy list: Martin, Jessica.
— Lori's buddy list: Meghan.

— Compute the in/out degree of each vertex. Is the graph connected?
— Who is the most popular? Least? Who is the most antisocial?

— If we're having a party and want to distribute the message the most quickly,
who should we tell first?

Topological Sort

Problem: Find an order in
which all these courses can
be taken.

Example: 142 - 143 - 378
- 370 2 321 2 341 - 322
- 326 2 421 =2 401

In order to take a course, you must
take all of its prerequisites first

Topological Sort

Given a digraph G = (V, E), find a total ordering of its
vertices such that:

for any edge (v, w) in E, v precedes w in the ordering

Topo sort - good example

Any total ordering in which
all the arrows go to the right
@ is a valid solution

A 4

(&)

N
(ar-(8)|(®)|(©xDKE)

Note that F can go anywhere in this list because it is not connected.
Also the solution is not unique.

Topo sort - bad example

Any ordering in which
an arrow goes to the left
@ is not a valid solution

oy
T@@

Only acyclic graphs can be
topologically sorted

* Adirected graph with a cycle cannot be
topologically sorted.

Topological sort algorithm: 1

Step 1: Identify vertices that have no incoming edges
e The “in-degree” of these vertices is zero

12

Topo sort algorithm: 1a

Step 1: Identify vertices that have no incoming edges
e If no such vertices, graph has only cycle(s) (cyclic graph)
e Topological sort not possible — Halt.

/

Example of a cyclic graph

13

Topo sort algorithm:1b

Step 1: Identify vertices that have no incoming edges
e Select one such vertex

Select

14

Topo sort algorithm: 2

Step 2: Delete this vertex of in-degree 0 and all its
outgoing edges from the graph. Place it in the
output.

15

Continue until done
Repeat Step 1 and Step 2 until graph is empty

Select

9%

ORI

16

B

Select B. Copy to sorted list. Delete B and its edges.

17

C

Select C. Copy to sorted list. Delete C and its edges.

P
N

. N

/ \

' \
1

\

\ C !

>
~
. ~a

’
7’
-
1
1
1
1
1
, 1
’ 1
‘< 1
.
4 1
7z
7z 1
4 1
7’
7’ 1
.
, 1
4 1
.
7’ [}
7
a
—

18

D

Select D. Copy to sorted list. Delete D and its edges.

19

E, F

Select E. Copy to sorted list. Delete E and its edges.
Select F. Copy to sorted list. Delete F and its edges.

-» @00066

,__\
~

. N

A \

'-|-| 1

[

'\ ,
~ e
~— =

20

Done

4.

Topological Sort Algorithm

Store each vertex’s In-Degree in an array D
Initialize queue with all “in-degree=0" vertices

While there are vertices remaining in the queue:
(a) Dequeue and output a vertex
(b) Reduce In-Degree of all vertices adjacent to it by 1

(c) Enqueue any of these vertices whose In-Degree became
Zero

If all vertices are output then success, otherwise
there is a cycle.

22

Pseudocode

Queue Q := [Vertices with in-degree 0]
while notEmpty (Q) do
X := Dequeue (Q)
Output (x)
y := A[x]; // y gets a linked list of vertices
while vy # null do
Dly.value] := Dl[y.value] - 1;
1f D[y.value] = 0 then Enqueue (Q,y.value);
y = y.next;
endwhile

endwhile

23

Topo Sort w/ queue

Queue (before):
Queue (after): 1, 6

@<§> o

Answer:

Topo Sort w/ queue

Queue (before): 1, 6
Queue (after): 6, 2

Answer: 1

25

Topo Sort w/ queue

Queue (before): 6, 2
Queue (after): 2

Answer: 1, 6

26

Topo Sort w/ queue

Queue (before): 2
Queue (after): 3

Answer: 1, 6, 2

27

Topo Sort w/ queue

Queue (before): 3
Queue (after): 4

Answer: 1,6, 2,3

28

Topo Sort w/ queue

Queue (before): 4
Queue (after): 5

Answer: 1,6, 2, 3,4

29

Topo Sort w/ queue

Queue (before): 5
Queue (after):

Answer: 1,6, 2,3,4,5

30

Topo Sort w/ stack

Stack (before):
Stack (after): 1, 6

Topo Sort w/ stack

Stack (before): 1, 6
Stack (after): 1, 7, 8

=" s
1 |
\3 B i c ‘@

Topo Sort w/ stack

Stack (before): 1, 7, 8
Stack (after): 1, 7

=" %
1 |
\3 B i c ‘@

Answer: 6, 8

33

Topo Sort w/ stack

Stack (before): 1, 7
Stack (after): 1

=" %
1 |
\3 B i c ‘;@)

Answer: 6, 8, 7

Topo Sort w/ stack

Stack (before): 1
Stack (after): 2

Answer: 6,8, 7,1

35

Topo Sort w/ stack

Stack (before): 2
Stack (after): 3

Answer:6,8,7,1, 2

36

Topo Sort w/ stack

Stack (before): 3

Stack (after): 4
0
(2 53 0
0 y _‘____""“-_-:@ 0
) 0
0 _v >

Answer:6,8,7,1, 2,3

37

Topo Sort w/ stack

Stack (before): 4
Stack (after): 5

0
------- 0
0 ’@ -------- . 0
@ : __________________ t’/ _____ >
B T \
0 v g .

Answer:6,8,7,1,2,3,4

38

Topo Sort w/ stack

Stack (before): 5

Stack (after):
0
(2 53 0
0 y _‘____""“-_-:@ 0
i) 0
0 3

Answer:6,8,7,1,2,3,4,5

39

TopoSort Fails (cycle)

Queue (before):
Queue (after): 1

TopoSort Fails (cycle)

Queue (before): 1
Queue (after): 2

@\@
%

@

Answer: 1

TopoSort Fails (cycle)

Queue (before): 2
Queue (after):

Answer: 1, 2

What is the run-time???

Initialize D // Mapping of vertex to its in-degree
Queue Q := [Vertices with in-degree 0]
while notEmpty (Q) do
X := Dequeue (Q)
Output (x)
v := A[x]; // yv gets a linked list of vertices
while y # null do
D[ly.value] := Dly.value] - 1;
if D[y.value] = 0 then Enqueue(Q,y.value);
y = y.next;
endwhile

endwhile

43

Topological Sort Analysis

Initialize In-Degree array: O(|V| + |E])
Initialize Queue with In-Degree 0 vertices: O(|V])
Dequeue and output vertex:

— | V| vertices, each takes only O(1) to dequeue and
output: O(|V])

Reduce In-Degree of all vertices adjacent to a vertex and
Enqueue any In-Degree O vertices:

— O([E[)
For input graph G=(V,E) run time = O(|V| + |E|)

— Linear time!

44

Depth-first search

* depth-first search (DFS): finds a path between
two vertices by exploring each possible path
as many steps as possible before backtracking

— often implemented recursively

DES example

* All DFS paths from A to others (assumes ABC edge order)
— A
— A->B
— A>B->D
— A>B->F
— A>B->F->E
— A->C
— A>C->G

 What are the paths that DFS did not find?

46

DFS pseudocode

* Pseudo-code for depth-first search:
dfs(vl, v2):
dfs(vi, v2, {})
dfs(vl, v2, path):
path +=v1.
mark v1 as visited.
ifvlisv2:
path is found.

for each unvisited neighbor v, of v1
where there is an edge from v1 to v;:

if dfs(v, v2, path) finds a path, path is found.
path -=v1. path is not found.

o
DFS observations ofc}o

© ©® ©
* guaranteed to find a path if one exists

* easy to retrieve exactly what the path
is (to remember the sequence of edges
taken) if we find it

e optimality: not optimal. DFS is guaranteed to
find a path, not necessarily the best/shortest
path

— Example: DFS(A, E) may return
A->B->F->E

Another DFS example
e Using DFS, find a path from BOS to LAX.

Breadth-first search

* breadth-first search (BFS): finds a path
between two nodes by taking one step down
all paths and then immediately backtracking

— often implemented by maintaining
a list or queue of vertices to visit

— BFS always returns the path with
the fewest edges between the start (e) (© (&)

and the goal vertices ofoXo

BFS example

e All BFS paths from A to others (assumes ABC edge order)
— A
— A->B
— A->C
— A->E
— A>B->D
— A>B->F
— A>C->G

 What are the paths that BFS did not find?

51

BFS pseudocode

* Pseudo-code for breadth-first search:
bfs(vl, v2):
List :={v1}.
mark v1 as visited.

while List not empty:
v := List.removefFirst().
ifvisv2:
path is found.

for each unvisited neighbor v; of v
where there is an edge from v to v;:

List.addLast(v,).

path is not found.

52

BFS observations

optimality:
— in unweighted graphs, optimal. (fewest edges = best)

— In weighted graphs, not optimal.
(path with fewest edges might not have the lowest weight)

disadvantage: harder to reconstruct what the actual path is once
you find it

— conceptually, BFS is exploring many possible paths in parallel, so it's
not easy to store a Path array/list in progress

observation: any particular vertex is only part of one partial path at
a time
— We can keep track of the path by storing predecessors for each vertex
(references to the previous vertex in that path)

Another BFS example
* Using BFS, find a path from BOS to SFO.

54

DFS, BFS runtime

What is the expected runtime of DFS, in terms of the
number of vertices V and the number of edges E ?

What is the expected runtime of BFS, in terms of the
number of vertices V and the number of edges E ?

Answer: O(| V| + | E|)

— each algorithm must potentially visit every node and/or
examine every edge once.

— why not O(| V| * |E|) ?

What is the space complexity of each algorithm?

