CSE 373: Data Structures and Algorithms

Lecture 18: Graphs II

Directed graphs

 directed graph (digraph): edges are one-way connections between vertices

Trees as Graphs

- Every tree is a graph with some restrictions:
 - -the tree is directed
 - -the tree is acyclic
 - there is exactly one directed path from the root to every node

More terminology

• **degree**: number of edges touching a vertex

– example: W has degree 4

– what is the degree of X? of Z?

adjacent vertices: connected directly by an edge

 If graph is directed, a vertex has a separate in/out degree

Graph questions

- Are the following graphs directed or not directed?
 - Buddy graphs of instant messaging programs?
 (vertices = users, edges = user being on another's buddy list)
 - bus line graph depicting all of Seattle's bus stations and routes
 - graph of movies in which actors have appeared together
- Are these graphs potentially cyclic? Why or why not?

Graph exercise

- Consider a graph of instant messenger buddies.
 - What do the vertices represent? What does an edge represent?
 - Is this graph directed or undirected? Weighted or unweighted?
 - What does a vertex's degree mean? In degree? Out degree?
 - Can the graph contain loops? cycles?
- Consider this graph data:
 - Jessica's buddy list: Meghan, Alan, Martin.
 - Meghan's buddy list: Alan, Lori.
 - Toni's buddy list: Lori, Meghan.
 - Martin's buddy list: Lori, Meghan.
 - Alan's buddy list: Martin, Jessica.
 - Lori's buddy list: Meghan.
 - Compute the in/out degree of each vertex. Is the graph connected?
 - Who is the most popular? Least? Who is the most antisocial?
 - If we're having a party and want to distribute the message the most quickly, who should we tell first?

Topological Sort

Topological Sort

Given a digraph G = (V, E), find a total ordering of its vertices such that:

for any edge (v, w) in E, v precedes w in the ordering

Topo sort - good example

Note that F can go anywhere in this list because it is not connected.

Also the solution is not unique.

Topo sort - bad example

Only acyclic graphs can be topologically sorted

 A directed graph with a cycle cannot be topologically sorted.

Topological sort algorithm: 1

Step 1: Identify vertices that have no incoming edges

• The "in-degree" of these vertices is zero

Topo sort algorithm: 1a

Step 1: Identify vertices that have no incoming edges

- If no such vertices, graph has only cycle(s) (cyclic graph)
- Topological sort not possible Halt.

Topo sort algorithm:1b

Step 1: Identify vertices that have no incoming edges

• Select one such vertex

Topo sort algorithm: 2

Step 2: Delete this vertex of in-degree 0 and all its outgoing edges from the graph. Place it in the output.

Continue until done

Repeat Step 1 and Step 2 until graph is empty

B

Select B. Copy to sorted list. Delete B and its edges.

C

Select C. Copy to sorted list. Delete C and its edges.

D

Select D. Copy to sorted list. Delete D and its edges.

E, F

Select E. Copy to sorted list. Delete E and its edges.

Select F. Copy to sorted list. Delete F and its edges.

Done

Topological Sort Algorithm

- Store each vertex's In-Degree in an array D
- 2. Initialize queue with all "in-degree=0" vertices
- 3. While there are vertices remaining in the queue:
 - (a) Dequeue and output a vertex
 - (b) Reduce In-Degree of all vertices adjacent to it by 1
 - (c) Enqueue any of these vertices whose In-Degree became zero
- If all vertices are output then success, otherwise there is a cycle.

Pseudocode

```
Queue Q := [Vertices with in-degree 0]
while notEmpty(Q) do
  x := Dequeue(Q)
  Output(x)
  y := A[x]; // y gets a linked list of vertices
  while y ≠ null do
    D[y.value] := D[y.value] - 1;
    if D[y.value] = 0 then Enqueue(Q,y.value);
    y := y.next;
  endwhile
endwhile
```

Queue (before): Queue (after): 1, 6

Answer:

Queue (before): 1, 6 Queue (after): 6, 2

Answer: 1

Queue (before): 6, 2

Queue (after): 2

Answer: 1, 6

Queue (before): 2 Queue (after): 3

Answer: 1, 6, 2

Queue (before): 3 Queue (after): 4

Answer: 1, 6, 2, 3

Queue (before): 4 Queue (after): 5

Answer: 1, 6, 2, 3, 4

Queue (before): 5 Queue (after):

Answer: 1, 6, 2, 3, 4, 5

Stack (before): Stack (after): 1, 6

Answer:

Stack (before): 1, 6 Stack (after): 1, 7, 8

Answer: 6

Stack (before): 1, 7, 8

Stack (after): 1, 7

Answer: 6, 8

Stack (before): 1, 7

Stack (after): 1

Answer: 6, 8, 7

Stack (before): 1 Stack (after): 2

Answer: 6, 8, 7, 1

Stack (before): 2

Stack (after): 3

Answer: 6, 8, 7, 1, 2

Topo Sort w/ stack

Stack (before): 3

Stack (after): 4

Answer: 6, 8, 7, 1, 2, 3

Topo Sort w/ stack

Stack (before): 4

Stack (after): 5

Answer: 6, 8, 7, 1, 2, 3, 4

Topo Sort w/ stack

Stack (before): 5 Stack (after):

Answer: 6, 8, 7, 1, 2, 3, 4, 5

TopoSort Fails (cycle)

Queue (before): Queue (after): 1

Answer:

TopoSort Fails (cycle)

Queue (before): 1 Queue (after): 2

Answer: 1

TopoSort Fails (cycle)

Queue (before): 2 Queue (after):

Answer: 1, 2

What is the run-time???

```
Initialize D  // Mapping of vertex to its in-degree
Queue Q := [Vertices with in-degree 0]
while notEmpty(Q) do
  x := Dequeue(Q)
  Output(x)
  y := A[x]; // y gets a linked list of vertices
  while y ≠ null do
    D[y.value] := D[y.value] - 1;
    if D[y.value] = 0 then Enqueue(Q,y.value);
    y := y.next;
  endwhile
```

Topological Sort Analysis

- Initialize In-Degree array: O(|V| + |E|)
- Initialize Queue with In-Degree 0 vertices: O(|V|)
- Dequeue and output vertex:
 - |V| vertices, each takes only O(1) to dequeue and output: O(|V|)
- Reduce In-Degree of all vertices adjacent to a vertex and Enqueue any In-Degree 0 vertices:
 - O(|E|)
- For input graph G=(V,E) run time = O(|V| + |E|)
 - Linear time!

Depth-first search

- depth-first search (DFS): finds a path between two vertices by exploring each possible path as many steps as possible before backtracking
 - often implemented recursively

DFS example

- All DFS paths from A to others (assumes ABC edge order)
 - A
 - $-A \rightarrow B$
 - A -> B -> D
 - A -> B -> F
 - A -> B -> F -> E
 - − A -> C
 - A -> C -> G

What are the paths that DFS did not find?

DFS pseudocode

 Pseudo-code for depth-first search: dfs(v1, v2): dfs(v1, v2, {})

dfs(v1, v2, path):

path += v1.

mark v1 as visited.

*if v*1 *is v*2:

path is found.

for each unvisited neighbor v_i of v1 where there is an edge from v1 to v_i : if $dfs(v_i, v2, path)$ finds a path, path is found. path -= v1. path is not found.

DFS observations

- guaranteed to find a path if one exists
- easy to retrieve exactly what the path is (to remember the sequence of edges taken) if we find it
- optimality: not optimal. DFS is guaranteed to find <u>a</u> path, not necessarily <u>the</u> best/shortest path
 - Example: DFS(A, E) may return A -> B -> F -> E

Another DFS example

Using DFS, find a path from BOS to LAX.

Breadth-first search

- breadth-first search (BFS): finds a path between two nodes by taking one step down all paths and then immediately backtracking
 - often implemented by maintaining a list or queue of vertices to visit
 - BFS always returns the path with the fewest edges between the start and the goal vertices

BFS example

- All BFS paths from A to others (assumes ABC edge order)
 - A
 - $-A \rightarrow B$
 - − A -> C
 - − A -> E
 - A -> B -> D
 - A -> B -> F
 - A -> C -> G

What are the paths that BFS did not find?

BFS pseudocode

Pseudo-code for breadth-first search:

```
bfs(v1, v2):
  List := \{v1\}.
  mark v1 as visited.
  while List not empty:
     v := List.removeFirst().
     if v is v2:
       path is found.
    for each unvisited neighbor v<sub>i</sub> of v
     where there is an edge from v to v_i:
       List.addLast(v_i).
  path is not found.
```


BFS observations

- optimality:
 - in unweighted graphs, optimal. (fewest edges = best)
 - In weighted graphs, not optimal.
 (path with fewest edges might not have the lowest weight)
- disadvantage: harder to reconstruct what the actual path is once you find it
 - conceptually, BFS is exploring many possible paths in parallel, so it's not easy to store a Path array/list in progress
- observation: any particular vertex is only part of one partial path at a time
 - We can keep track of the path by storing predecessors for each vertex (references to the previous vertex in that path)

Another BFS example

• Using BFS, find a path from BOS to SFO.

DFS, BFS runtime

- What is the expected runtime of DFS, in terms of the number of vertices V and the number of edges E?
- What is the expected runtime of BFS, in terms of the number of vertices V and the number of edges E?
- Answer: O(|V| + |E|)
 - each algorithm must potentially visit every node and/or examine every edge once.
 - why not O(|V| * |E|)?
- What is the space complexity of each algorithm?