CSE 373: Data Structures and Algorithms

Lecture 17: Graphs

What are graphs?

Yes, this is a graph....

But we are interested in a different kind of "graph"

Airline Routes

Nodes = cities

Edges = direct flights

Computer Networks

Nodes = computers

Edges = transmission rates

CSE Course Prerequisites at UW

Graphs

- graph: a data structure containing
 - a set of vertices V
 - a set of edges E, where an edge
 represents a connection between 2 vertices
 - -G=(V,E)
 - edge is a pair (v, w) where v, w in V

- the graph at right: V = {a, b, c} and E = {(a, b), (b, c), (c, a)}
 - Assuming that a graph can only have one edge between a pair of vertices and cannot have an edge to itself, what is the maximum number of edges a graph can contain, relative to the size of the vertex set V?

Paths

- path: a path from vertex A to B is a sequence of edges that can be followed starting from A to reach B
 - can be represented as vertices visited or edges taken
 - example: path from V to Z: {b, h} or {V, X, Z}

• reachability: v_1 is reachable from v_2 if a path exists from V1 to V2

 connected graph: one in which it's possible to reach any node from any other

– is this graph connected?

Cycles

- cycle: path from one node back to itself
 - example: {b, g, f, c, a} or {V, X, Y, W, U, V}
- loop: edge directly from node to itself
 - many graphs don't allow loops

Weighted graphs

- weight: (optional) cost associated with a given edge
- example: graph of airline flights
 - if we were programming this graph, what information would we have to store for each vertex / edge?

Directed graphs

- directed graph (digraph): edges are one-way connections between vertices
 - if graph is directed, a vertex has a separate in/out degree

Trees as Graphs

- Every tree is a graph with some restrictions:
 - -the tree is directed
 - there is exactly one directed path from the root to every node

More terminology

- **degree**: number of edges touching a vertex
 - example: W has degree 4
 - what is the degree of X? of Z?
- adjacent vertices: connected directly by an edge

Graph questions

- Are the following graphs directed or not directed?
 - Buddy graphs of instant messaging programs?
 (vertices = users, edges = user being on another's buddy list)
 - bus line graph depicting all of Seattle's bus stations and routes
 - graph of movies in which actors have appeared together
- Are these graphs potentially cyclic? Why or why not?

Graph exercise

- Consider a graph of instant messenger buddies.
 - What do the vertices represent? What does an edge represent?
 - Is this graph directed or undirected? Weighted or unweighted?
 - What does a vertex's degree mean? In degree? Out degree?
 - Can the graph contain loops? cycles?
- Consider this graph data:
 - Jessica's buddy list: Meghan, Alan, Martin.
 - Meghan's buddy list: Alan, Lori.
 - Toni's buddy list: Lori, Meghan.
 - Martin's buddy list: Lori, Meghan.
 - Alan's buddy list: Martin, Jessica.
 - Lori's buddy list: Meghan.
 - Compute the in/out degree of each vertex. Is the graph connected?
 - Who is the most popular? Least? Who is the most antisocial?
 - If we're having a party and want to distribute the message the most quickly, who should we tell first?