CSE 373: Data Structures and
Algorithms



Set implementation: insert

 Similar structure to contains
— Calculate hash of new element
—Check if the element is already in the set

e Add the element to the front of the list
thatis at table[hash (value) ]



Set implementation: insert

public boolean add(String value) {

int wvaluePosition = hash (value) ;

// check to see if the value is already in the set
StringHashEntry temp = table[valuePosition];
while (temp != null) {
if (temp.data.equals (value)) {
return false;

}

temp = temp.next;

// add the value to the set

StringHashEntry newEntry = new StringHashEntry(value, table[valuePosition]);
table[valuePosition] = newEntry;

size++;

return true;



Set implementation: remove

public boolean remove (String value) {
int valuePosition = hash (value);
if (table[valuePosition] == null) ({ // empty bucket

return false;

}

if (table[valuePosition].data.equals(value)) { // removing front
table[valuePosition] = table[valuePosition] .next;
size--; return true;

}

StringHashEntry temp = table[valuePosition];
while (temp.next != null) { // find value
if (temp.next.data.equals(value)) {

temp.next = temp.next.next;

size—--; return true;

}

temp = temp.next;

}

return false;



Hash versus tree

 Which is better, a hash set or a tree set?

Hash Tree




Implementing Set ADT (Revisited)

Insert Remove Search
Unsorted
array o(1) O(n) O(n)
Sorted array O(log(n)+n) O(log(n) + n) O(log(n))
Linked list O(1) O(n) O(n)
baBlzzc(iefd) O(log n) O(log n) O(log n)
Hash table O(1) O(1) O(1)




Probing hash tables

* Alternative strategy for collision resolution: try
alternative cells until empty cell found

— cells hy(x), hy(x), h,(x), ... tried in succession,
where h(x) = (hash(x) + f(i)) % TableSize

— fis collision resolution strategy
— bigger table needed



Linear probing

* linear probing: resolving collisions in slot i by
putting the colliding element into the next
available slot (i+1, i+2, ...)

— add 41, 34, 7, 18, then 21, then 57

e 21 collides (41 is already there), so we search
ahead until we find empty slot 2

e 57 collides (7 is already there), so we search
ahead twice until we find empty slot 9

— lookup algorithm becomes slightly modified; we
have to loop now until we find the element or an
empty slot

* what happens when the table gets mostly full?

41

34

18




Linear probing
* fli)=1i

* Probe sequence:
Ot probe = h(x) mod TableSize
1th probe = (h(x) + 1) mod TableSize
2t probe = (h(x) + 2) mod TableSize

ith probe = (h(x) + i) mod TableSize



Primary clustering problem

* clustering: nodes being placed close
together by probing, which degrades
hash table's performance

—add 89, 18, 49, 58, 9

— now searching for the value 28 will have to
check half the hash table! no longer
constant time...

O 00 N o »n o W N R O

49

58

18

89




Linear probing — clustering

Uuuuumm

L]l
no coII|S|on\. { Uuuuuuuuuuuumu

]
no collision —»wuuuuuuuummu
L

¥
mmmummwmﬁ@ummu

eyeiiei 1®
L oo .mmgwmmu@muu

uumuwmmw@ummwmu

i

collision in small cluster

collision in large cluster

11



Alternative probing strategy

* Primary clustering occurs with linear probing
because the same linear pattern:

— if a slot is inside a cluster, then the next slot must
either:
* also be in that cluster, or
e expand the cluster

* |nstead of searching forward in a linear
fashion, consider searching forward using a
quadratic function



Quadratic probing

* quadratic probing: resolving collisions

on slot i by putting the colliding element
into slot i+1, i+4, i+9, i+16, ...
—add 89, 18, 49, 58, 9
* 49 collides (89 is already there), so we search
ahead by +1 to empty slot O

e 58 collides (18 is already there), so we search
ahead by +1 to occupied slot 9, then +4 to
empty slot 2

* 9 collides (89 is already there), so we search
ahead by +1 to occupied slot O, then +4 to
empty slot 3

— what is the lookup algorithm?

O 00 N O U1 b W N —» O

49

58

18

89




Quadratic probing in action

hash ( 89, 10 ) = 9

hash ( 18, 10 ) = 8

hash ( 49, 10 ) = 9

hash ( 58, 10 ) = 8

hash ( 9, 10 ) = 9

After insert 89 Afterinsert 18 After insert 49 After insert 58 After insert 9

0 49 49 49
1
2 58 58
3 9
4
5
6
7
8 18 18 18 18
9 89 89 89 89 89




Quadratic probing
* fli)y=17

* Probe sequence:
Ot probe = h(x) mod TableSize
1th probe = (h(x) + 1) mod TableSize
2t probe = (h(x) + 4) mod TableSize
3t probe = (h(x) + 9) mod TableSize

ith probe = (h(x) + i2) mod TableSize



Quadratic probing benefit

* If one of h + i? falls into a cluster, this does not imply
the next one will

hash (obj) == 3

+12 +22 +32
——
cluster

N—

* For example, suppose an element was to be inserted in
bucket 23 in a hash table with 31 buckets

— The sequence in which the buckets would be checked is:
23,24,27,1,8,17, 28, 10, 25, 11, 30, 20, 12,6, 2,0



Quadratic probing benefit

* Even if two buckets are initially close, the sequence in
which subsequent buckets are checked varies greatly

— Again, with TableSize = 31, compare the first 16 buckets
which are checked starting with elements 22 and 23:

22 22,2326, 0, 7,16,27, 9,24,10,29,19,11, 5, 1,

23 23,2427, 1, 8,17,28,10,25,11,30,20,12, 6, 2, 0

e Quadratic probing solves the problem of primary
clustering



Quadratic probing drawbacks

* Suppose we have 8 buckets:
1°%8=1,22%8=4,3?%8=1

— In this case, we are checking bucket h(x) + 1 twice
having checked only one other bucket

* No guarantee that
(h(x) + i?) % TableSize
will cycle through O, 1, ..., TableSize — 1



Quadratic probing

Solution:
— require that TableSize be prime

— (h(x) + i’) % TableSize fori=0, ..., (TableSize — 1)/2 will
cycle through (TableSize + 1)/2 values before repeating

Example with M = 11:

0,1,4,9,16 = 5,25 = 3,36 = 3

With M = 13:

0,1,4,9,16 = 3,25 = 12,36 = 10,49 = 10

With M = 17:

0,1,4,9,16,25 =28,36 = 2,49 = 15,64 = 13,81 = 13

Note: the symbol = means "% M ="



Double hashing

* double hashing: resolve collisions on slot i by applying a
second hash function

* fliy=i%*glx)
where g is a second hash function
— limitations on what g can evaluate to?
— recommended: g(x) = R— (x % R), where R prime smaller than
TableSize

* Probe sequence:
Ot probe = h(x) % TableSize
1th probe = (h(x) + g(x)) % TableSize
2th probe = (h(x) + 2*g(x)) % TableSize
3t probe = (h(x) + 3*g(x)) % TableSize

ith probe = (h(x) + i*g(x)) % TableSize



o A WODN -~ O

6

Double Hashing Example

h(x) = x mod 7 and g(x) =5 — (x mod 5)

41

41

Probes 1

o O b W DN -~ O

16

16

41

o O B W DN -~ O

40

16

40

41

o O B W DN -~ O

47

47

16

40

41

o O B W DN -~ O

10

47

16

10

40

41

o O b W DN -~ O

55

47

16

10

55

40

41




