CSE 373: Data Structures and
Algorithms

Lecture 12: Priority Queues (Heaps) Il



Removing from a min-heap

* min-heaps support remove of the min element (the root)

— must remove the root while maintaining heap
completeness and ordering properties

— intuitively, the last leaf must disappear to keep it a heap
— initially, just swap root with last leaf (we'll fix it)




Removing from heap, cont'd.

* must fix heap-ordering property; root is out of order
— shift the root downward ("bubble down") until it's in place
— swap it with its smaller child each time
* What happens if we don't always swap with the smaller




Heap practice problem

* The heap below is the min-heap built in the last heap
practice problem.

* Now, show the state of the heap after remowve has
been executed on it 3 times, and state which
elements are returned by the removal.




Code for remove method

public 1nt remove () {
int result = this.peek();

// move last element of array up to root

array[l] = arrayl[size];
arrayl[size] = 0;
size—--;

bubbleDown () ;

return result;



The bubbleDown helper

private void bubbleDown () {
int index = 1;
while (hasLeftChild(index)) {

if (hasRightChild(index)
&& (array[rightIndex (index) ]

int childIndex = leftIndex (index) ;

childIndex = rightIndex (index) ;

}

1f (array[childIndex] < array[index]) {
swap (childIndex, index);
index = childIndex;
} else {
break;
}
}
}
// helpers
private int leftIndex(int 1) { return 1 * 2; }
private int rightIndex (int 1) { return 1 * 2 + 1; }

private
private

boolean haslLeftChild(int 1)
boolean hasRightChild(int 1)

{ return leftIndex (i)
{ return rightIndex (i)

< array|[leftIndex(index)]))

<= size;
<= size;

}

}



Advantages of array heap

* the "implicit representation” of a heap in an array makes
several operations very fast

— add a new node at the end (O(1))
— from a node, find its parent (O(1))
— swap parent and child (O(1))

— a lot of dynamic memory allocation of tree nodes is
avoided

— the algorithms shown usually have elegant solutions



Generic Collection
Implementation



PrintJob Class

public class PrintJob {
private String user;
private int number;

private int priority;

public PrintJob (int number, String user, 1int priority) {
this.number = number;
this.user = user;

this.priority = priority;

public String toString() {

return this.number + " (" + user + "):" + this.priority;



Type Parameters (Generics)

ArrayList<Type> name = new ArrayList<Type> () ;

* Recall: When constructinga java.util.ArrayList,
you specify the type of elements it will contain between <
and >.

— We say that the ArrayList class accepts a type parameter,
or that it is a generic class.

ArrayList<String> names = new ArrayList<String>();
names.add ("Kona") ;
names.add ("Daisy") ;



Implementing generics

// a parameterized (generic) class
public class name<Type> {

J

— By putting the Type in < >, you are demanding that any client
that constructs your object must supply a type parameter.

— The rest of your class's code can refer to that type by name.

e Exercise: Convert our priority queue classes to use generics.

11



Generics and arrays

public class Foo<T> {
private T myField; // ok

public void methodl (T param) {

myField = new T():; // error
T[] a = new T[10]; // error

— You cannot create objects or arrays of a parameterized
type.

12



Generics/arrays, fixed

public class Foo<T> {
private T myField; // ok

public void methodl (T param) {
myField = param; // ok
T[] a2 = (T[]) (new Object[10]); // ok

— But you can create variables of that type, accept them as
parameters, return them, or create arrays by casting
Object[].

13



