CSE 373: Data Structures and
Algorithms

Lecture 8: Trees Il (AVL Trees)

Introduction

Observation: the shallower the BST the better

 For a BST with n nodes
— Average case height is O(log n)
— Worst case height is ©(n)

 Simple cases such as insert(1, 2, 3, ..., n)
lead to the worst case scenario: he|ght O(n)

Strategy: Don't let the tree get lopsided
* Constantly monitor balance for each subtree
 Rebalance subtree before going too far astray

Balanced Tree

* Balanced Tree: a tree in which heights of
subtrees are approximately equal

47 76 ar)
Q@ B & © ®

unbalanced tree balanced tree

Tree height calculation

* Height is max number of edges
from root to leaf
— height(null) = -1
— height(1) =0
— height(A)?

. . . h
 Hint: it's recursive! left

right

Tree balance and height

(@) The balanced tree has a height of:

(b) The unbalanced tree has a height of:

Tree balance: probabilities

binary search trees resulting from adding a
random permutation of 1, 2, and 3:

a) (b) () (d) (e)

* Which is most likely to occur, given random input?

(

 Which input orderings are "bad" or "good"?

AVL trees

* AVL tree: a binary search tree that uses modified add
and remove operations to stay balanced as items are
added to and remove from it

— specifically, maintains a balance factor of each node of 0, 1, or -1
* i.e. no node's two child subtrees differ in height by more than 1

— invented in 1962 by two Russian mathematicians (Adelson-
Velskii and Landis)

— one of several auto-balancing trees (others in book)

* balance factor, for a tree node n :
— height of n's right subtree minus height of n's left subtree
— BF, = Heightn.right B Heightn.lef‘t
— start counting heights at n

AVL tree examples

Two binary search trees:
(@) an AVL tree
(b) not an AVL tree (unbalanced nodes are darkened)

B

More AVL tree examples

Not AVL tree examples

Testing the Balance Property

We need to be able to:
1. Track Balance
2. Detect Imbalance

3. Restore Balance

Tracking Balance

10
3 data
10 0 height
" / \ children
5 20 [\
1 1 0
9 15 30
0 0

AVL Trees: search, insert, remove

e AVL search:
— Same as BST search.

* AVL insert:

— Same as BST insert, except you need to check
your balance and may need to “fix” the AVL
tree after the insert.

* AVL remove:
— Remove it, check your balance, and fix it.

Problem cases for AVL insert

1. LL Case: insertion into left subtree of node's left child
2. LR Case: insertion into right subtree of node's left child

Problem cases for AVL insert, cont.

3. RL Case: insertion into left subtree of node's right child

4. RR Case: insertion into right subtree of node's right child

16

Maintaining Balance

* Maintain balance using rotations

— The idea: reorganize the nodes of an unbalanced
subtree until they are balanced, by "rotating" a
trio of parent - leftChild - rightChild

* Maintaining balance will result in searches
(contains) that take O(log n)

Right rotation to fix Case 1 (LL)

right rotation (clockwise): left child becomes parent;
original parent demoted to right

(a) Before rotation (b) After rotation

18

Right rotation, steps

1. detach left child (7)'s right subtree (10) (don't lose it!)
2. consider left child (7) be the new parent

3. attach old parent (13) onto right of new parent (7)

4. attach old left child (7)'s old right subtree (10) as left
subtree of new right child (13)

13 7 7 7
/ /\ /\
7 15 5| |13 Bl | 13 5| |13
/\10 { 15 3/ 15 :{ 1{\15

w\m

10 10

19

Initial tree

7(-1)

[\

5(0)

9 (0)

N\

3 (0)

6 (0)

After insertion

7(-2)

/ \

Right Rotation

Right rotation example

5(0)

[\

5(-1)

9(0)

3(-1)

7 (0)

/[\

3 (-1)

6 (0)

1(0)

New node

[/ \

1(0)

6 (0)

9 (0)

20

Right rotation example

(a) Before rotation (b) After rotation

21

Code for right rotation

private StringTreeNode rightRotate (StringTreeNode parent)
// 1. detach left child's right subtree
StringTreeNode leftright = parent.left.right;

// 2. consider left child to be the new parent
StringTreeNode newParent = parent.left;

// 3. attach old parent onto right of new parent
newParent.right = parent;

// 4. attach old left child's old right subtree as
// left subtree of new right child
newParent.right.left = leftright;

parent.height = computeHeight (parent);
newParent.height = computeHeight (newParent);

return newParent;

22

Left rotation to fix Case 4 (RR)

left rotation (counter-clockwise): right child becomes
parent; original parent demoted to left

(a) After rotation (b) Before rotation

Left rotation, steps

detach right child (70)'s left subtree (60) (don't lose it!)
consider right child (70) be the new parent
attach old parent (50) onto left of new parent (70)

attach old right child (70)'s old left subtree (60) as right
subtree of new left child (50)

50 70 70 70
N\ /\ /\
70 50 80 30 80 50 80
/\ \ \ N\
60 80 40 90 40 90 40 60 90
90 i
60 60

Problem: Cases 2, 3

a single right rotation does not fix Case 2!
a single left rotation also does not fix Case 3

(a) Before rotation (b) After rotation

25

Left-right rotation for Case 2

left-right double rotation: a left rotation of the left
child, followed by a right rotation at the parent

(a) Before rotation (b) After rotation

26

1.

2.

Left-right rotation, steps

perform left-rotate on left child
perform right-rotate on parent (current node)

Initial tree

13

5
/

15

ﬁ

10

Left Rotation

13

7

ZAN

10

N o

15

Right Rotation

7

&)

15

27

Left-right rotation example

(a) Before rotation (b) After rotation

28

Right-left rotation for Case 3

right-left double rotation: a right rotation of the right
child, followed by a left rotation at the parent

(a) Before rotation (b) After rotation

29

Right-left rotation, steps

1. perform right-rotate on right child
2. perform left-rotate on parent (current node)

Initial tree Right Rotation Left Rotation
5 5) 10

3 13 3 10 S 13
/7 \ DN N AN
10 15 7 i3 S 7 15

/ N

7 15

30

AVL tree practice problem

* Draw the AVL tree that would result if the
following numbers were added in this order to an
initially empty tree:

— 40, 70, 90, 80, 30, -50, 10, 60, 40, -/0, 20, 35, 37/, 32,
38, 39

* Then give the following information about the
tree:
— Size
— height
— balance factor at each node

Implementing AVL add

e After normal BST add, update heights from new
leaf up towards root

— If balance factor changes to > +1 or < -1, then use
rotation(s) to rebalance

 Let n be the first unbalanced node found

— Case 1: n has balance factor -2 and n's left child has
balance factor of -1

* fixed by performing right-rotation on n
— Case 2: n has balance factor -2 and n's left child has

balance factor of 1

* fixed by perform left-rotation on n's left child, then right-
rotation on n (left-right double rotation)

AVL add, cont'd

— Case 3: n has balance factor 2 and n's right child has
balance factor of -1

* fixed by perform right-rotation on n's right child, then left-
rotation on n (right-left double rotation)

— Case 4: n has balance factor 2 and n's right child has
balance factor of 1

 fixed by performing left-rotation on n

* After rebalancing, continue up the tree updating
heights
— What if n's child has balance factor 0?
— What if another imbalance occurs higher up?

Code for AVL add

protected StringTreeNode add(StringTreeNode node, String value) {

node = super.add(node, value);
node.height = computeHeight (node) ;
node = rebalance (node) ;

return node;

}

protected StringTreeNode rebalance (StringTreeNode node) {
int bf = balanceFactor (node);
if (bf < -1)
if (balanceFactor (node.left) < 0) { // case 1 (LL)
node = rightRotate (node) ;
} else { // case 2 (LR)
node.left = leftRotate(node.left);
node = rightRotate (node);

}
} else if (bf > 1) {
/ take care of symmetric cases
/ case 3 (RL)
/ case 4 (RR)

NN

Problems for AVL remove

removal from AVL tree can also unbalance the tree

Initial tree

10 (1)

/ \

5 (1)

15 (1)

/

3(0)

/

Node to be
removed

/

After removal

10(2)

/ \

5(0)

15 (1)

13 (-1)

17 (0)

/

11 (0)

/

13 (-1)

17 (0)

/

11 (0)

35

Right-left rotation on remove

Right Rotation

10(2)

/ \

5 (0)

13 (1)

/

11 (0)

15 (1)

Left Rotation

13 (0)

/

10 (0)

15(1)

[\ \

5(0)

11 (0)

17 (0)

17 (0)

36

AVL remove, cont'd

1. perform normal BST remove (with replacement of node to
be removed with its successor)

2. update heights from successor node location upwards
towards root

— if balance factor changes to +2 or -2, then use rotation(s) to
rebalance

* remove has the same 4 cases (and fixes) as insert
— are there any additional cases?
 After rebalancing, continue up the tree updating heights;

must continue checking for imbalances in balance factor,
and rebalancing if necessary

— Are all cases handled?

Additional AVL Remove Cases

Two additional cases cause AVL tree to become unbalanced on remove

In these cases, a node (e.g., k; below) violates balance condition after

removing from one of its subtrees when its other subtree has a balance
factor of O

— these cases do not occur for insertion: when insertion causes a tree to
have a balance factor of 2 or -2, the child containing the subtree where
the insertion occurred either has a balance factor of -1 or 1

Before removing
from subtree C

After removing
from subtree C

Fixing AVL Remove Cases

* Each of these cases can be fixed through a single rotation

— If remove from right subtree of node creates imbalance and left
subtree has balance factor of 0 we right rotate (shown below)

— If remove from left subtree of node creates imbalance and right
subtree has balance factor of 0 we left rotate (symmetric case)

After right
rotate to fix
imbalance

After removing
from subtree C

