/** * CSE 373, Winter 2011, Jessica Miller * A binary search tree implementation of a Set for Strings. This file contains * all of the code that was discussed in the 01/21/2011 and 01/24/2011 lectures * on binary search trees. */ public class StringTreeSet implements StringSet { private StringTreeNode root; private int numElements; public StringTreeSet() { root = null; } /** * Adds a value to our String set. * @return true if this set did not already contain the added element */ public boolean add(String value) { int oldSize = size(); this.root = add(root, value); return oldSize != size(); } /** * Recursive add helper method. * @param root the old state of node being examined * @param value * @return the new state of the node being examined */ private StringTreeNode add(StringTreeNode root, String value) { if (root == null) { // found the spot where the new values should go; // create a node for it and increment the set size root = new StringTreeNode(value); numElements++; } else if (root.data.compareTo(value) == 0) { // the value is already in the set; alter nothing and return the // node that contains the value return root; } else if (root.data.compareTo(value) > 0) { // the value is less than the current node, recurse left // must apply x = change(x) to remember changes made to root.left root.left = add(root.left, value); } else { // the value is less than the current node, recurse left // must apply x = change(x) to remember changes made to root.left root.right = add(root.right, value); } return root; } /** * Returns true if the set contains the specified String. * @param value the value to search for * @return true if the found is found; false otherwise */ public boolean contains(String value) { return contains(root, value); } /** * Recursive print helper; binary search the tree until we find the value * or determine that it is not in the place in the tree where it would be. * @param root the BST in which to search for the value * @param value the value to search for * @return true if the found is found; false otherwise */ private boolean contains(StringTreeNode root, String value) { if (root == null) { return false; // not in set } else if (root.data.compareTo(value) == 0) { return true; // found! } else if (root.data.compareTo(value) > 0) { return contains(root.left, value); // search left } else { return contains(root.right, value); // search right } } /** * Finds the minimum value in the given node's subtree. This could * also be easily written non-recursively. * @param root the node in which to find the minimum value * @return the minimum node in the given node's subtree */ private StringTreeNode findMin(StringTreeNode root) { if (root == null) { return null; } else if (root.left == null) { return root; } else { return findMin(root.left); } } /** * Prints the BST sideways. Good for debugging. */ public void print() { print(this.root, 0); } /** * Recursive print helper; in-order traversal. * @param node * @param level */ private void print(StringTreeNode node, int level) { if (node == null) return; else { print(node.right, level + 1); printTabs(level); System.out.println(node.data); print(node.left, level + 1); } } private void printTabs(int level) { for (int i = 0; i < level; i++) { System.out.print("\t"); } } /** * Removes the specified String from this set if it is present. * @return true if this set contained the specified element */ public boolean remove(String value) { int oldSize = size(); root = remove(root, value); return oldSize != size(); } /** * Recursive remove helper method. * @param root the old state of node being examined * @param value * @return the new state of the node being examined */ private StringTreeNode remove(StringTreeNode root, String value) { if (root == null) { // the value was not found; no change necessary return root; } else if (root.data.compareTo(value) > 0) { // the value is less than the current node, recurse left root.left = remove(root.left, value); } else if (root.data.compareTo(value) < 0) { // the value is less than the current node, recurse right root.right = remove(root.right, value); } else { // we have found the node to remove if (root.right != null && root.left != null) { // if the node has both left and right subtrees, find the // minimum value in the right branch; the node's value with // minimum value; remove minimum value from right branch root.data = findMin(root.right).data; root.right = remove(root.right, root.data); } else if (root.right != null) { // if the node's left subtree is empty, replace the node with // its right child root = root.right; numElements--; } else { // if the node's right subtree is empty or both subtrees are // empty, replace the node with its left child (i.e. null in // the both empty case) root = root.left; numElements--; } } return root; } /** * Returns the number of elements in the set. */ public int size() { return numElements; } /** * Returns a String representation of StringTreeSet with elements in their * "natural order" (e.g., [Jake, Kasey, Marisa, Robert]). */ public String toString() { String str = "[" + toString(root); if (str.length() > 1) { str = str.substring(0, str.length() - 2); } return str + "]"; } /** * Recursive toString helper; in-order traversal. */ private String toString(StringTreeNode root) { String str = ""; if (root != null) { str += toString(root.left); str += root.data + ", "; str += toString(root.right); } return str; } }