CSE 373: Data Structures and
Algorithms

Sorting Classification

: External
In memory sorting)
sorting
Comparison sorting Specialized
Q(N log N) Sorting
of disk
O(N?) O(N log N) O(N) accesses
* Bubble Sort * Merge Sort * Bucket Sort e Simple
* Selection Sort * Quick Sort External
* Insertion Sort Merge Sort

e Shellsort Sort

in place? stable?

O(nlog n) Comparison Sorting
(continued)

Merge sort example 2

13 6 21 18 9 4 8 20
0 7
13 6 21 18 9 20
0 3 4 7
13 6 21 18 9 8 20
0 1 2 3 4 6 7
13 6 21 18 9 8 20
0 1 2 3 4 6 7
6 13 18 21 4 8 20
0 1 2 3 4 6 7
6 13 18 21 4 20
0 3 4 7
4 6 9 13 18 20 21

Quick sort

e quick sort: orders a list of values by partitioning the list
around one element called a pivot, then sorting each
partition

— invented by British computer scientist C.A.R. Hoare in 1960

* more specifically:

— choose one element in the list to be the pivot (partition
element)

— organize the elements so that all elements less than the
pivot are to its left and all greater are to its right

— apply the quick sort algorithm (recursively) to both
partitions

Quick sort, continued

For correctness, it's okay to choose any pivot.

For efficiency, one of following is best case, the other worst
case:

— pivot partitions the list roughly in half
— pivot is greatest or least element in list

Which case above is best?

We will divide the work into two methods:
— quickSort — performs the recursive algorithm
— partition —rearranges the elements into two partitions

Quick sort pseudo-code

* Let S be the input set.

1.1f |S| =0or |S| =1, then return.

2. Pick an element vin S. Call v the pivot.

3. Partition S — {v} into two disjoint groups:
e S,={x€S—{v} | x=v}

e S,={x&€S—{v} | x=v}

4. Return { quicksort(S,), v, quicksort(S,) }

Quick sort illustrated

7Z pick a pivot

40 T 37 2
10 32 6 35
artition
)p (‘ ' 57
quicksort qulckiort
C2 6 10 12 17]@,3,% 7 40)
cambine

66 10 12 17 18 32 35 37 4Q

How to choose a pivot

* first element
— bad if input is sorted or in reverse sorted order
— bad if input is nearly sorted
— variation: particular element (e.g. middle element)

* random element
— even a malicious agent cannot arrange a bad input

e median of three elements

— choose the median of the left, right, and center
elements

Partitioning algorithm

The basic idea:
1.Move the pivot to the rightmost position.

2.Starting from the left, find an element = pivot.
Call the position |.

3.Starting from the right, find an element <
pivot. Call the position j.

4.Swap S[i] and S[j].

8 1 4 9 0 3 5 2 7 6

0 9

10

Partitioning example

1 4 9 0 3 5 2

Quick sort code

public static void quickSort(int[] a) {
quickSort(a, 0, a.length - 1);
t

private static void quickSort(int[] a, int min, 1nt max) {
if (min >= max) { // base case; no need to sort
return;
t
// choose pivot -- we'll use the first element (might be bad!)
int pivot = a[min];

swap (a, min, max); // move pivot to end

// partition the two sides of the array
int middle = partition(a, min, max - 1, pivot);

// restore the pivot to its proper location
swap (a, middle, max);

// recursively sort the left and right partitions
quickSort (a, min, middle - 1);
quickSort (a, middle + 1, max);

12

Quick sort code, cont'd.

// partitions a with elements < pivot on left and
// elements > pivot on right;

// returns index of element that should be swapped with pivot
private static int partition(int[] a, int 1, 1int J, 1int pivot)
i--; J++; // kludge because the loops pre-increment

while (true) {
// move index markers 1i,j toward center
// until we find a pair of mis-partitioned elements
do { 1++; } while (1 < J && a[1] < pivot);

do { j--; } while (i < j && a[7j] > pivot);
if (4 >= J) |

break;
} else {

Swap(a/ j—l j) ’
}
}

return 1i;

Quick sort code, cont'd.

// partitions a with elements < pivot on left and
// elements > pivot on right;

// returns index of element that should be swapped with pivot
private static int partition(int[] a, int 1, 1int J, 1int pivot)
i--; J++; // kludge because the loops pre-increment

while (true) {
// move index markers 1,7 toward center
// until we find a pair of mis-partitioned elements
do { i++; } while (1 < 3 && al[l] < pivot);

do { j--; } while (i1 < 7 && al[]] > pivot);
if (1 >= J) {

break;
} else {

Swap(a/ il j);
}
}

return 1i;

14

Quick sort code, cont'd.

// partitions a with elements < pivot on left and
// elements > pivot on right;

// returns index of element that should be swapped with pivot
private static int partition(int[] a, int i, int j, int pivot)
i--; J++; // kludge because the loops pre-increment

while (true) {
// move index markers 1i,j toward center
// until we find a pair of mis-partitioned elements
do { 1++; } while (1 < J && a[1] < pivot);
do { j--; } while (i < j && a[7j] > pivot);
if (1< 9) |
swap(a, 1, J);

} else {
break;
}

}

return 1i;

15

Quick sort code, cont'd.

// partitions a with elements < pivot on left and
// elements > pivot on right;

// returns index of element that should be swapped with pivot
private static int partition(int[] a, int i, int j, int pivot)
i--; J++; // kludge because the loops pre-increment

while (true) {

// move index markers 1i,j toward center
// until we find a pair of mis-partitioned elements
do { 1++; } while (1 < J && a[1] < pivot);
do { j--; } while (i < j && a[7j] > pivot);
if (1 < 3) |
swap(a, 1, 7J);

} else {
break;
}

}

return 1i;

16

"Median of three" pivot

@ @ @
9 17 12 8 Vs 21 1
0 pick pivot 7
1 17 12 8 Vs 21 9
0 .1 @ . 7
1 Vs 12 8 17 21 9
0 i *® .j 7
1 Vs 8 12 17 21 9
0 i® ®i swapSJi] /
with S[right]
1 7/ 8 9 17 21 12
0 7

17

Special cases

What happens when the array contains many duplicate
elements?

What happens when the array is already sorted (or
nearly sorted) to begin with?

Small arrays

— Quicksort is slower than insertion sort when is N is small
(say, N < 20).

— Optimization: Make |A| = 20 the base case and use
insertion sort algorithm on arrays of that size or smaller.

Quick sort runtime

* Worst case: pivot is the smallest (or largest) element all the
time (recurrence solution technique: telescoping)

T(n) =T(n-1) + cn
T(n-1) = T(n-2) + c(n-1)
T(n-2) = T(n-3) + c(n-2)

T(2) =T(1) + 2c
N
T(N) =T(1) + ¢ Ei = O(N?)
1=2
e Best case: pivot is the median (recurrence solution
technigue: Master's Theorem)

T(n)=2T(n/2) + cn
T(n) =cnlogn+n=0(nlogn)

Quick sort runtime, cont'd.
* Assume each of the sizes for S, are equally

likely. 0 = |S;| = N-1.

T(N) = (%E[T(i) + T(N -1-1)]) +cN

(N-1)T(N —-1) = 2§T(i) + c(N-1)’

Quick sort runtime, cont'd.

NTIN)=(N+1)T(N-1)+ 2cN
TON) _T(N-1) 2 T divide

N +1 N N +1 equation
T(N-1) _T(N-2) 2c by N(N+1)
N N-1 N

T(N-2) _T(N-3) 2
N-1 N-2 N-1

T2) T() L2

3 2 3
N+l
T(N) _ T(1) +2C21
N +1 2 “~ 1

~log, (N+1) —3/2

T(N) =O(N log N)

Quick sort runtime summary

* O(nlog n) on average.

* O(n?) worst case.
comparisons

merge O(n log n)

average: O(n log n)

quick worst: O(n2)

Sorting practice problem

* Consider the following array of int values.

(22, 11, 34, -5, 3, 40, 9, 1lo6, ©]

(f) Write the contents of the array after all the
partitioning of quick sort has finished (before any
recursive calls).

Assume that the median of three elements (first,
middle, and last) is chosen as the pivot.

Sorting practice problem

e Consider the following array:

. 7, 17, 22,

-1,

9, ©, 11, 35, -3]

* Each of the following is a view of a sort-in-progress on the
elements. Which sort is which?

— (If the algorithm is a multiple-loop algorithm, the array is shown after
a few of these loops have completed. If the algorithm is recursive, the
array is shown after the recursive calls have finished on each sub-part

of the array.)

— Assume that the quick sort algorithm chooses the first element as its

pivot at each pass.

(3)[—3, _ll 6/ 171
(b) [_11 7/ 17/ 22/
(C)[9/ 22/ 17/ _1/
(d) [_11 7/ 6/ 9/
(e)[_3l 6/ _1/ 7/
(f) [_1/ 7/ 171 22/

9, 22, 11, 35, 7]
-3, 6, 9, 11, 35]
-3, 7, 6, 35, 11]
11, -3, 17, 22, 35]
9, 17, 11, 35, 22]
9, 6, 11, 35, -3]

Sorting practice problem

* For the following questions, indicate which of the six
sorting algorithms will successfully sort the elements in the
least amount of time.

— The algorithm chosen should be the one that completes fastest,
without crashing.

— Assume that the quick sort algorithm chooses the first element
as its pivot at each pass.

— Assume stack overflow occurs on 5000+ stacked method calls.

— (a) array size 2000, random order
— (b) array size 500000, ascending order
— (c) array size 100000, descending order
» special constraint: no extra memory may be allocated! (O(1) storage)
— (d) array size 1000000, random order

— (e) array size 10000, ascending order
» special constraint: no extra memory may be allocated! (O(1) storage)

Lower Bound for Comparison Sorting

* Theorem: Any algorithm that sorts using only
comparisons between elements requires

Q(nlog n) comparisons.

— Intuition
* n! permutations that a sorting algorithm can output
e each new comparison between any elements a and b cuts
down the number of possible valid orderings by at most a
factor of 2 (either all orderings where a > b or orderings
where b > a)

* to know which output to produce, the algorithm must make
at least log,(n!) comparisons before

* log,(n!) =Q(nlogn)

O(n) Specialized Sorting

Bucket sort

* The bucket sort makes assumptions about
the data being sorted

« Consequently, we can achieve better than
O(n log n) run times

Bucket Sort: Supporting Example

« Suppose we are sorting a large number of local phone
numbers, for example, all residential phone numbers
in the 206 area code region (over two million)

« Consider the following scheme:

— create an array with 10 000 000 bits (i.e. B1tSet)
— set each bit to 0 (indicating false)

— for each phone number, set the bit indexed by the phone
number to 1 (true)

— once each phone number has been checked, walk through
the array and for each bit which is 1, record that number

Bucket Sort: Supporting Example

* In this example, the number of phone
numbers (2 000 000) is comparable to the
size of the array (10 000 000)

* The run time of such an algorithm is O(n):

— we make one pass through the data,

— we make one pass through the array and
extract the phone numbers which are true

Bucket Sort

* This approach uses very little memory and
allows the entire structure to be kept in

main memory at all times

* We will term each entry in the bit array a
bucket

» \We fill each bucket as appropriate

Example

» Consider sorting the following set
of unique integers in the range
0, ..., 31:
20 1 31 8 29 28 11 14 6 16 15
27 10 4 23 7 19 18 0 26 12 22
* Create an bit array with 32 buckets
* This requires 4 bytes

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

HNEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Example

* For each number, set the bit of the
corresponding bucket to 1

* Now, just traverse the list and
record only those numbers for
which the bit is 1 (true):

o I 4 6 7 8 10 11 12 14 15

16 18 19 20 22 23 26

27 28 29 31

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

BLISISISIST SIS ISISIST ISISIS] SISIS] ISISISE IS T ISIS

Bucket Sort

How is this so fast?

An algorithm which can sort arbitrary data
must be

Q(n log n)

In this case, we don’t have arbitrary data: we

have one further constraint, that the items
being sorted fall within a certain range

Using this assumption, we can reduce the run
time

Bucket Sort

Modification: what if there are repetitions
In the data

In this case, a bit array is insufficient

Two options, each bucket is either:
— a counter, or
— a linked list

The first is better if objects in the bin are
the same

Example

» Sort the digits

0328537532823513285349235109352354213

* We start with an array

of 10 counters, each initially
set to zero:

© 00N O bW N-—-~O
(@] (o] (o] (o] [o] (o] (o] (o] [o] [

Example

* Moving through the first 10 digits
0328537532823513285349235109352354213

we increment the corresponding
buckets

© 00N O bW N-—-~O
(@] B =l [=] 1iN] (=] o8] 1N (o] B

Example

* Moving through remaining digits
0328537532823513285349235109352354213
we continue incrementing the
corresponding buckets

© 00N O bW N-—-~O
N|WI=2OININIOINTWIN

Example

* We now simply read off the number of
each occurrence:

0011122222223333333333445555555788899

* For example:
— there are seven 2s
—there are two 4s

o

© 00N O b WN -
N|WI=2 OO NTWIN

Run-time Summary

* The following table summarizes the run-
times of bucket sort

Case | RunTime Comments
Worst No worst case
Average

Best No best case

External Sorting

Simple External Merge Sort

* Divide and conquer: divide the file into smaller,
sorted subfiles (called runs) and merge runs

e |nitialize:

— Load chunk of data from file into RAM

— Sort internally

— Write sorted data (run) back to disk (in separate files)
 While we still have runs to sort:

— Merge runs from previous pass into runs of twice the
size (think merge() method from mergesort)

— Repeat until you only have one run

