CSE 373: Data Structures and Algorithms

Lecture 5: Math Review/Asymptotic Analysis III

Growth rate terminology

- T(N) = O(f(N))
 - f(N) is an upper bound on T(N)
 - T(N) grows no faster than f(N)
- $T(N) = \Omega(g(N))$
 - g(N) is a **lower bound** on T(N)
 - T(N) grows at least as fast as g(N)
- $T(N) = \Theta(g(N))$
 - T(N) grows at the same rate as g(N)
- T(N) = o(h(N))
 - T(N) grows strictly slower than h(N)

More about asymptotics

• Fact: If f(N) = O(g(N)), then $g(N) = \Omega(f(N))$.

• Proof: Suppose f(N) = O(g(N)). Then there exist constants c and n_0 such that $f(N) \le c$ g(N) for all $N \ge n_0$

Then $g(N) \ge (1/c) f(N)$ for all $N \ge n_{O_n}$ and so $g(N) = \Omega(f(N))$

Facts about big-Oh

- If $T_1(N) = O(f(N))$ and $T_2(N) = O(g(N))$, then - $T_1(N) + T_2(N) = O(f(N) + g(N))$ - $T_1(N) * T_2(N) = O(f(N) * g(N))$
- If T(N) is a polynomial of degree k, then: $T(N) = \Theta(N^k)$
 - example: $17n^3 + 2n^2 + 4n + 1 = \Theta(n^3)$
- $log^k N = O(N)$, for any constant k

Complexity cases

- Worst-case complexity: "most challenging" input of size n
- Best-case complexity: "easiest" input of size n
- Average-case complexity: random inputs of size n
- Amortized complexity: m "most challenging" consecutive inputs of size n, divided by m

Bounds vs. Cases

Two orthogonal axes:

- Bound
 - Upper bound (O, o)
 - Lower bound (Ω)
 - Asymptotically tight (Θ)
- Analysis Case
 - Worst Case (Adversary), T_{worst}(n)
 - Average Case, T_{avg}(n)
 - Best Case, T_{best}(n)
 - Amortized, T_{amort}(n)

One can estimate the bounds for any given case.

Example

List.contains(Object o)

- returns true if the list contains o; false otherwise
- Input size: n (the length of the List)
- T(n) = "running time for size n"
- But T(n) needs clarification:
 - Worst case T(n): it runs in at most T(n) time
 - Best case T(n): it takes at least T(n) time
 - Average case T(n): average time

Complexity classes

 complexity class: A category of algorithm efficiency based on the algorithm's relationship to the input size N.

Class	Big-Oh	If you double N,	Example
constant	O(1)	unchanged	10ms
logarithmic	O(log ₂ N)	increases slightly	175ms
linear	O(N)	doubles	3.2 sec
log-linear	O(N log ₂ N)	slightly more than doubles	6 sec
quadratic	O(N ²)	quadruples	1 min 42 sec
cubic	O(N ³)	multiplies by 8	55 min
		•••	
exponential	O(2 ^N)	multiplies drastically	5 * 10 ⁶¹ years

Recursive programming

- A method in Java can call itself; if written that way, it is called a recursive method
- The code of a recursive method should be written to handle the problem in one of two ways:
 - base case: a simple case of the problem that can be answered directly; does not use recursion.
 - recursive case: a more complicated case of the problem, that isn't easy to answer directly, but can be expressed elegantly with recursion; makes a recursive call to help compute the overall answer

Recursive power function

Defining powers recursively:

```
pow(x, 0) = 1

pow(x, y) = x * pow(x, y-1), y > 0
```

```
// recursive implementation
public static int pow(int x, int y) {
    if (y == 0) {
        return 1;
    } else {
        return x * pow(x, y - 1);
    }
}
```

Searching and recursion

- Problem: Given a <u>sorted</u> array a of integers and an integer i, find the index of any occurrence of i if it appears in the array. If not, return -1.
 - We could solve this problem using a standard iterative search; starting at the beginning, and looking at each element until we find i
 - What is the runtime of an iterative search?
- However, in this case, the array is sorted, so does that help us solve this problem more intelligently? Can recursion also help us?

Binary search algorithm

- Algorithm idea: Start in the middle, and only search the portions of the array that might contain the element *i*. Eliminate half of the array from consideration at each step.
 - can be written iteratively, but is harder to get right
- called binary search because it chops the area to examine in half each time
 - implemented in Java as method
 Arrays.binarySearch in java.util package

Binary search example

Binary search example

Binary search example

Binary search pseudocode

```
binary search array a for value i:
  if all elements have been searched,
     result is -1.
  examine middle element a[mid].
  if a[mid] equals i,
    result is mid.
  if a[mid] is greater than i,
     binary search left half of a for i.
  if a[mid] is less than i,
     binary search right half of a for i.
```

Runtime of binary search

- How do we analyze the runtime of binary search and recursive functions in general?
- binary search either exits immediately, when input size <= 1 or value found (base case), or executes itself on 1/2 as large an input (rec. case)

```
- T(1) = c

- T(2) = T(1) + c

- T(4) = T(2) + c

- T(8) = T(4) + c

- ...

- T(n) = T(n/2) + c
```

How many times does this division in half take place?

Divide-and-conquer

- divide-and-conquer algorithm: a means for solving a problem that first separates the main problem into 2 or more smaller problems, then solves each of the smaller problems, then uses those sub-solutions to solve the original problem
 - 1: "divide" the problem up into pieces
 - 2: "conquer" each smaller piece
 - 3: (if necessary) combine the pieces at the end to produce the overall solution
 - binary search is one such algorithm

Recurrences, in brief

- How can we prove the runtime of binary search?
- Let's call the runtime for a given input size n, T(n). At each step of the binary search, we do a constant number c of operations, and then we run the same algorithm on 1/2 the original amount of input. Therefore:

$$- T(n) = T(n/2) + c$$

 $- T(1) = c$

 Since T is used to define itself, this is called a recurrence relation.

Solving recurrences

Master Theorem:

A recurrence written in the form T(n) = a * T(n / b) + f(n)

(where f(n) is a function that is $O(n^k)$ for some power k) has a solution such that

$$O(n^{\log_b a}), \quad a > b^k$$

$$T(n) = O(n^k \log n), \quad a = b^k$$

$$O(n^k), \quad a < b^k$$

• This form of recurrence is very common for divide-and-conquer algorithms

Runtime of binary search

• Binary search is of the correct format: T(n) = a * T(n / b) + f(n)

-
$$T(n) = T(n/2) + c$$

- $T(1) = c$
- $f(n) = c = O(1) = O(n^{0})$... therefore $k = 0$
- $a = 1$, $b = 2$

- 1 = 2⁰, therefore:
 T(n) = O(n⁰ log n) = O(log n)
- (recurrences not needed for our exams)

Which Function Dominates?

What we are asking is: is f = O(g)? Is g = O(f)?

Race I

$$f(n) = n^3 + 2n^2$$
 vs. $g(n) = 100n^2 + 1000$

Race II

Race III

 $n + 100n^{0.1}$ vs. 2n + 10 log n

Race IV

Race V

 $n^{-15}2^n/100$

VS.

1000n¹⁵

Race VI

A Note on Notation

You'll see...

$$g(n) = O(f(n))$$

and people often say...

$$g(n)$$
 is $O(f(n))$.

These really mean

$$g(n) \in O(f(n))$$
.

That is, O(f(n)) represents a set or class of functions.