CSE 373: Data Structures and
Algorithms

Lecture 5: Math Review/Asymptotic
Analysis Il

Growth rate terminology

T(N) = O(f(N))
— f(N) is an upper bound on T(N)
— T(N) grows no faster than f(N)

T(N) = €2(g(N))
— g(N) is a lower bound on T(N)
— T(N) grows at least as fast as g(N)

T(N) = ©(g(N))

— T(N) grows at the same rate as g(N)

T(N) = o(h(N))
— T(N) grows strictly slower than h(N)

More about asymptotics

e Fact: If f(N) = O(g(N)), then g(N) = Q(f(N)).

* Proof: Suppose f(N) = O(g(N)).
Then there exist constants c and n, such that
f(N) = c g(N) forall N = n,

Then g(N) = (1/c) f(N) for allN = n,
and so g(N) = Q(f(N))

Facts about big-Oh

* If T,(N)=0(f(N)) and T,(N) = O(g(N)), then
— T,(N) + T,(N) = O(f(N) + g(N))
— T,(N) * T,(N) = O(f(N) * g(N))

e |f T(N) is a polynomial of degree k, then:
T(N) = ©(N¥)

—example: 17n3+ 2n?+4n + 1 = ©(n3)

* logt N = O(N), for any constant k

Complexity cases

Worst-case complexity: “most challenging”
input of size n

Best-case complexity: “easiest” input of size n

Average-case complexity: random inputs of
size n

Amortized complexity: m “most challenging”
consecutive inputs of size n, divided by m

Bounds vs. Cases

Two orthogonal axes:
* Bound
— Upper bound (O, o)
— Lower bound (€2)
— Asymptotically tight (©)
* Analysis Case
— Worst Case (Adversary), T,,,,«(n)
— Average Case, T, ,(n)
— Best Case, T, ..(n)
— Amortized, T, (Nn)

One can estimate the bounds for any given case.

Example

List.contains (Object 0)

returns true if the list contains o; false
otherwise

Input size: n (the length of the List)
T(n) = “running time for size n”

But T(n) needs clarification:

— Worst case T(n): it runs in at most T(n) time

— Best case T(n): it takes at least T(n) time
— Average case T(n): average time

Complexity classes

 complexity class: A category of algorithm
efficiency based on the algorithm's
relationship to the input size N.

Class Big-Oh If you double N, ... Example
constant O(1) unchanged 10ms
logarithmic | O(log, N) |increases slightly 175ms
linear O(N) doubles 3.2 sec
log-linear O(N log, N) | slightly more than doubles | 6 sec
quadratic O(N?) quadruples 1 min 42 sec
cubic O(N3) multiplies by 8 55 min
exponential | O(2N) multiplies drastically 5 * 10%! years

Recursive programming

A method in Java can call itself; if written that
way, it is called a recursive method

* The code of a recursive method should be written
to handle the problem in one of two ways:

— base case: a simple case of the problem that can be
answered directly; does not use recursion.

— recursive case: a more complicated case of the
problem, that isn't easy to answer directly, but can be
expressed elegantly with recursion; makes a recursive
call to help compute the overall answer

Recursive power function

* Defining powers recursively:

1
x * pow(x, y-1), y >0

pow(x, 0)
pow(x, y)

// recursive implementation
public static int pow(int x, 1int y) {

if (y == 0) |
return 1;
} else {

return x * pow(x, y - 1);

}

Searching and recursion

* Problem: Given a sorted array a of integers and
an integer /i, find the index of any occurrence of i
if it appears in the array. If not, return -1.

— We could solve this problem using a standard iterative
search; starting at the beginning, and looking at each
element until we find i

— What is the runtime of an iterative search?

 However, in this case, the array is sorted, so does
that help us solve this problem more
intelligently? Can recursion also help us?

Binary search algorithm

e Algorithm idea: Start in the middle, and only
search the portions of the array that might
contain the element . Eliminate half of the array
from consideration at each step.

— can be written iteratively, but is harder to get right

* called binary search because it chops the area to
examine in half each time

— implemented in Java as method
Arrays.binarySearchin java.util package

Binary search example

16

o

A U A W N =

4

— min

7

16

20

— mid (too big!)

37

38

43

—— maxX

Binary search example

16

o

A U A W N =

4

— min

7

mid (too small!)

16

—— maxX

20

37

38

43

Binary search example

16

o

A U A W N =

4

7

16 | min, mid, max (found it!)

20

37

38

43

Binary search pseudocode

binary search array a for value i:
if all elements have been searched,
result is -1.
examine middle element a[mid].
if a[mid] equals j,
result is mid.
if a[mid] is greater than J,
binary search left half of a for i.
if almid] is less than i,
binary search right half of a for i.

Runtime of binary search

* How do we analyze the runtime of binary search and
recursive functions in general?

* binary search either exits immediately,
when input size <=1 or value found (base case),

or executes itself on 1/2 as large an input (rec. case)
T(1)=c

T(2)=T(1) + ¢

T(4)=T(2) +c

T(8)=T(4) + c

:I:in) =T(n/2) +c

* How many times does this division in half take place?

Divide-and-conquer

e divide-and-conquer algorithm: a means for
solving a problem that first separates the main
problem into 2 or more smaller problems, then
solves each of the smaller problems, then uses
those sub-solutions to solve the original problem

— 1: "divide" the problem up into pieces
— 2:"conquer" each smaller piece

— 3: (if necessary) combine the pieces at the end to
produce the overall solution

— binary search is one such algorithm

Recurrences, in brief

* How can we prove the runtime of binary search?

* Let's call the runtime for a given input size n, T(n).

At each step of the binary search, we do a
constant num er c of operations, and then we
run the same a gorlthm on 1/2 the original
amount of input. Therefore:

— T(n) =T(n/2) + ¢
—T(1)=c

* Since T is used to define itself, this is called a
recurrence relation.

Solving recurrences

Master Theorem:

A recurrence written in the form
T(n)=a * T(n/ b) + f(n)

(where f(n) is a function that is O(n¥) for some power k)
has a solution such that

on"°#*"), a>b"
T(n)=O0(n" logn),a = b*
on*), a<b"

This form of recurrence is very common for divide-and-conquer algorithms

Runtime of binary search

* Binary search is of the correct format:
T(n)=a *T(n/b) +f(n)

— T(n) =T(n/2) + c

—T(1)=c
— f(n)=c= () =0(n?) ... therefore k=0
—a=1,b=

e 1=29 therefore:
T(n) = O(n° log n) = O(log n)

* (recurrences not needed for our exams)

Which Function Dominates?

f(n) =

n3 + 2n2
nOi

n +100n°%!
5n°

n1>2n/100

82Iog n

g(n) =

100n2 + 1000
log n
2n+10logn
n!

1000n%>

3n’ +7n

What we are asking is:isf=0(g) ? Isg=0(f) ?

22

f(n)=

n3+2n?

Race |

12000 . T .

10000

8000

6000

4000

2000

n"3 + 202 ——
100n™2 + 1000 ——

10

9e+06

8e+06

Te+06

Be+06

Se+06

de+06

3e+06

2e+06

1e+06

vs. g(n)=100n2+1000

nt3 o+ 2ne ——
100n"2 + 1000 ——

20

40

60

g0

100 120 140 160 130 200

23

Race Il

nt-! VS. log n

?O T T T

60

S0 R .

30 # -

10 | .

O 1 1 1 1
0 2e+17 de+17 Be+17 Se+17 le+1¢

24

140

120

100

g0

n + 100n°-!

Race |l

VS. 2n

n + iOO nAO.
log n

T 2-59+18 T T T A~ T
n+ 100 n0.1 ——
2n + 10 log n
2e+18
| 1.5e+18 | .
le+18 F
Se+17 | .
0 1 1 1 1
0 2e+17 de+17 Be+17 Be+17

10 log n

25

le+1t

Race |V

5n° VS. n'

16000 : d4e+06 : : : :
14000 |- 3.5e+06 |
12000 |- Je+06 |
10000 |- 2.5e+06 |
8000 | 2e+06 |
6000 - 1.5e+06
4000 | 1e+06 |
2000 | 500000 |
0 - 0 : : - -

26

Race V

n-1°22/100 VS. 1000nt>

1e+18 1] 1 1 ~ 1 '/\] 1 1-29+40 1] t\' A]
n"-15 % 2°n 7 100 —— n"-15 % 2°n 7 100 ——
1000n"15 —— 1000n"15 ——
Be+17 | e
ge+39
Ge+l17 |
6e+39
4e+17 |
4e+39
2e+17 |
=t 2e+39
0 1 1 1 1 1 0

230 235 240 245 250 2355 260

27

8210g(n)

230000

200000

150000

100000

50000

Race VI

VS. 3n’ + 7n

T

8°(2 log n)
"7 + In

28

A Note on Notation

You'll see...

g(n) = O(f(n))

and people often say...

g(n) is O(f(n)).

These really mean

g(n) € O(f(n)).

That is, O(f(n)) represents a set or class of functions.

