CSE 373: Data Structures and
Algorithms

Lecture 3: Math Review/Asymptotic
Analysis

Announcements

* Programming Project #1
— Getting Help
* General Questions = Message board

— Feel free to answer/respond yourselves
— Please no code/specifics — general ideas only

 Specific/Implementation Questions = Office Hours (on
course website) or email cse373-staff AT cs DOT washington
DOT edu (read by myself and the three TAs)

— No turnin yet
— Using sox
e Want to add CSE 373? See me after class.

Motivation

e So much data!!

— Human genome: 3.2 * 10° base pairs

* If there are 6.8 * 10° on the planet, how many base pairs of
human DNA?

— Earth surface area: 1.49 * 108 km?

 How many photos if taking a photo of each m??
* For every day of the year (3.65 * 10?)?

* But aren't computers getting faster and faster?

Why algorithm analysis?

* As problem sizes get bigger, analysis is
becoming more important.

* The difference between good and bad
algorithms is getting bigger.

* Being able to analyze algorithms will help us

identify good ones without having to program
them and test them first.

Measuring Performance: Empirical
Approach

* Implement it, run it, time it (averaging trials)
— Pros?

— Cons?

Measuring Performance: Empirical
Approach

 Implement it, run it, time it (averaging trials)

— Pros?
* Find out how the system effects performance
 Stress testing — how does it perform in dynamic environment

* No math!

— Cons?
* Need to implement code

e Can be hard to estimate performance

* When comparing two algorithms, all other factors need to
be held constant (e.g., same computer, OS, processor, load)

Measuring Performance: Analytical
Approach

e Use a simple model for basic operation costs

 Computational Model

— has all the basic operations:
+, -, *,/, =, comparisons

— fixed sized integers (e.g., 32-bit)
— infinite memory

— all basic operations take exactly one time unit
(one CPU instruction) to execute

Measuring Performance: Analytical
Approach

* Analyze steps of algorithm, estimating amount of
work each step takes

— Pros?
* Independent of system-specific configuration
* Good for estimating
 Don't need to implement code

— Cons?

* Won't give you info exact runtimes optimizations made by
the architecture (i.e. cache)
* Only gives useful information for large problem sizes

* In real life, not all operations take exactly the same time and
have memory limitations

Analyzing Performance

Ill

* General “rules” to help measure how long it takes to do

things:
Basic operations Constant time
Consecutive statements Sum of timesx
Conditionals Test, plus larger branch cost
Loops Sum of iterations
Function calls Cost of function body
Recursive functions Solve recurrence relation...

~~
statementl;

Efficiency examples

statement2; > ?

statement3; B

for

for

(int 1 = 1, 1 <= N; 1++) {
statement4;

~
(int 1 = 1, 1 <= N; i++) {
statement5;
statement6;
statement?;

_/

~

Efficiency examples
~

statementl;)
statement2; > 3
statement3; D

for (int 1 = 1; 1 <= N; 1++) { \
statement4;
} >4N + 3
~
for (int 1 = 1; 1 <= N; 1i++) {
statement5; >~ 3N
statement6;
statement?7;

Efficiency examples 2

for (1nt 1 = 1; 1 <= N; 1++) { \
for (int 7 = 1; 7 <= N; jJ++) { ?
statementl;
}
}

for (1nt 1 = 1; 1 <= N; 1++) { =~
statement?;
statement3;
statement4; > 7
statement5;

Efficiency examples 2

for (int 1 = 1; 1 <= N; 1++) {
for (int j = 1; J <= N; J++) { N2
statementl;

J

}
> N2 + 4N
for (int 1 = 1; 1 <= N; 1i++) { ~
statement?;
statement3;
statement4; ~ 4N
statement5;

} g

* How many statements will execute if N = 10? If N =10007?

Relative rates of growth

most algorithms' runtime can be expressed as a function of the
input size N

rate of growth: measure of how quickly the graph of a function
rises

goal: distinguish between fast- and slow-growing functions

— we only care about very large input sizes
(for small sizes, most any algorithm is fast enough)

— this helps us discover which algorithms will run more quickly or slowly,
for large input sizes

most of the time interested in worst case performance; sometimes
look at best or average performance

Growth rate example

Consider these graphs of functions.
Perhaps each one represents an algorithm:
n3 + 2n2 12000 T T T T T - — T
100nZ + 1000 1002’“25 N igoé _

10000

e Which grows soco |

faster? <000 |

4000

2000

0

Growth rate example
e How about now?

Se+06

n 3 + £2n &

8e+06 - 100n"2 + 1000)

7e+06 | ff_
6e+06 | .
Se+06 / -
4e+06 | /

3e+06 |
2e+06 |

le+06 |

20 40 60 80 100 120 140 160 180 200

Big-Oh notation

* Defn:
T(N) = O(f(N))
if there exist positive constants ¢, n, such that:
T(N) =c-f(N) forall N =n,

* idea: We are concerned with how the function
grows when N is large. We are not picky about
constant factors: coarse distinctions among
functions

* Lingo: "T(N) grows no faster than f(N)."

Big-Oh example problems

* n=0(2n)?
e 2n=0(n)?

* n=0(n?)?

* n2=0(n)?

e n=0(1) ?
e 100=0(n)?

 214n + 34 =0(2n%?+8n) ?

Preferred big-Oh usage

* pick tightest bound. If f(N) =5N, then:
f(N) = O(N)
f(N) = O(N)
f(N) = O(N log N)
f(N) = O(N) < preferred

* ignore constant factors and low order terms

T(N) = O(N), not T(N) = O(5N)
T(N) = O(N3), not T(N) =O(N>+ N?+ N log N)

— Wrong: f(N) = O(g(N))
— Wrong: f(N) = O(g(N))

19

Show f(n) = O(n)

Claim: n2 + 100n = O(n?)
Proof: Must find c, n, such that for all n > n,,
n% + 100n <= cn?

Efficiency examples 3

Efficiency examples 3

sum = 0; —
for (int 1 = 1; 1 <= N * N; 1i++) {
for (int § = 1; jJ <= N * N * N; Jj++) {
sum-++; N3

}

=\

 So what is the Big-Oh?

N>+ 1

Math background: Exponents

* Exponents

— XY, or "X to the Yt power";
X multiplied by itself Y times

 Some useful identities
_ XA XB — XA+B
_ XA /XB — XA-B
— (XA)B = XAB
— XN4XN = 2N
— IN4IN = N+l

for

Efficiency examples 4

Efficiency examples 4

S Ulmn

for

= 0;
(int 1 = 1, 1 <= N; 1 += c) {
sum++; N/EN N/c + 1
}

’

* What is the Big-Oh?
— Intuition: Adding to the loop counter means that

the loop runtime grows linearly when compared
to its maximum value n.

Efficiency examples 5

= 0;
(int 1 = 1; 1 <= N; 1 *= ¢C) {}?}
sum++; : 5
}

* Intuition: Multiplying the loop counter means that
the maximum value n must grow exponentially to
linearly increase the loop runtime

Efficiency examples 5

sum = 0;
- . — . . — . ! * =
fojgun(,‘%_l;l;t 1 l; 1 <= N; 1 c) {}IogCN log. N+ 1

* What is the Big-Oh?

Math background: Logarithms

* Logarithms
— definition: X* =B if and only if log, B = A

— intuition: log, B means:
"the power X must be raised to, to get B"

— In this course, a logarithm with no base implies base 2.
log B means log, B

e Examples
— log, 16 =4 (because 2% = 16)
— log,,1000 =3 (because 10° = 1000)

Logarithm identities

ldentities for logs with addition, multiplication,
DOWers:

* log (AB)=1logA+logB
* log (A/B)=log A—logB
* log (A®) =B log A

|dentity for converting bases of a logarithm:

A,B,C>0,4A=1

— example:
log,32 = (log, 32) / (log, 4)
=5/2

Logarithm problem solving

 When presented with an expression of the form:
— log X=Y

and trying to solve for X, raise both sides to the a
power.

— X=a"

* When presented with an expression of the form:
— log X = log,Y
and trying to solve for X, find a common base between
the logarithms using the identity on the last slide.
— log X =log.Y / log b

Logarithm practice problems

 Determine the value of x in the following
equation.
— log, x +log,13 =3

 Determine the value of x in the following
equation.
— logg4 - log,x = log, 5 + log, . 6

