CSE 373: Data Structures and
Algorithms

Why Sorting?
Practical application
— People by last name

— Countries by population
— Search engine results by relevance

Fundamental to other algorithms

Different algorithms have different asymptotic and
constant-factor trade-offs

— No single ‘best’ sort for all scenarios
— Knowing one way to sort just isn’t enough

Many to approaches to sorting which can be used for other
problems

Problem statement

There are n comparable elements in an array and
we want to rearrange them to be in increasing
order

Pre:
— An array A of data records
— A value in each data record

— A comparison function
* L, =,>, comparelo

Post:

— For each distinct position i and j of 4, if i < 9 then
A[i] = A[]]

— A has all the same data it started with

Sorting Classification

: External
In memory sorting)
sorting
Comparison sorting Specialized
Q2(N log N) Sorting
of tape
O(N?) O(N log N) O(N) accesses
* Bubble Sort * Merge Sort * Bucket Sort e Simple
* Selection Sort ¢ Quick Sort External
* Insertion Sort Merge Sort

e Shellsort Sort

in place? stable?

Comparison Sorting

comparison-based sorting: determine order through
comparison operations on the input data:
<, >, comparelo, ...

Bogo sort

* bogo sort: orders a list of values by repetitively
shuffling them and checking if they are sorted

* more specifically:
— scan the list, seeing if it is sorted
— if not, shuffle the values in the list and repeat

* This sorting algorithm has terrible performance!
— Can we deduce its runtime?

Bogo sort code

public static void bogoSort (int[] a) {
while (!isSorted(a)) {
shuffle(a);
}
}

// Returns true if array a's elements
// are in sorted order.

public static boolean isSorted(int[] a) {
for (int 1 = 0; 1 < a.length - 1; 1i++) {
it (afi1] > af[i1+1]) |

return false;

}
}

return true;

Bogo sort code, helpers

// Shuffles an array of ints by randomly swapping each
// element with an element ahead of it in the array.
public static void shuffle(int[] a) {
for (int 1 = 0; 1 < a.length - 1; i++) {
// pick random number in [i+1l, a.length-1] inclusive
int range = a.length - 1 - (1 + 1) + 1;
int J = (int) (Math.random() * range + (i + 1)),
swap(a, i, J);

}

// Swaps al[i] with al[j].
private static voild swap(int[] a, int 1, int j) {
if (1 == 7)
return;

int temp = ali];

ali] = alJl];
alj] = temp;

Bogo sort runtime

* How long should we expect bogo sort to take?
— related to probability of shuffling into sorted order

— assuming shuffling code is fair, probability equals
1/ (number of permutations of n elements)

— average case performance: O(n * n!)
— worst case performance: O(infinity)
— What is the best case performance?

O(n?) Comparison Sorting

Bubble sort

* bubble sort: orders a list of values by repetitively
comparing neighboring elements and swapping their
positions if necessary

* more specifically:
— scan the list, exchanging adjacent elements if they are not
in relative order; this bubbles the highest value to the top
— scan the list again, bubbling up the second highest value

— repeat until all elements have been placed in their proper
order

"Bubbling" largest element

* Traverse a collection of elements
— Move from the front to the end

— "Bubble" the largest value to the end using pair-
wise comparisons and swapping

12 101 5

"Bubbling" largest element

* Traverse a collection of elements
— Move from the front to the end

— "Bubble" the largest value to the end using pair-
wise comparisons and swapping

101 5

13

"Bubbling" largest element

* Traverse a collection of elements
— Move from the front to the end

— "Bubble" the largest value to the end using pair-
wise comparisons and swapping

42

14

"Bubbling" largest element

* Traverse a collection of elements
— Move from the front to the end

— "Bubble" the largest value to the end using pair-
wise comparisons and swapping

2 |35 [12 |77 |01 | s

No need to swap

"Bubbling" largest element

* Traverse a collection of elements
— Move from the front to the end

— "Bubble" the largest value to the end using pair-
wise comparisons and swapping

42

35

12

16

"Bubbling" largest element

* Traverse a collection of elements

— Move from the front to the end

— "Bubble" the largest value to the end using pair-
wise comparisons and swapping

1

2

3

42

35

12

77

:

Largest value correctly placed

17

Bubble sort code

public static void bubbleSort (int[] a) {
for (int 1 = 0; 1 < a.length; 1i++) {
for (int 7 = 1; jJ < a.length - 1i; J++) {
// swap adjacent out-of-order elements
it (alJ-1]1 > alg]) |
swap (a, J-1, 73J);

Bubble sort runtime

* Running time (# comparisons) for input size n:

n—-1n-i n-—1

221=2 (-0
i=0 j=1 1=0
n-—1 n-—1
=n > 1-— l
1=0 1=0
2 (n=Dn
=@(n2)

— number of actual swaps performed depends on
the data; out-of-order data performs many swaps

Selection sort

* selection sort: orders a list of values by

repetitively putting a particular value into its final
position

* more specifically:
— find the smallest value in the list
— switch it with the value in the first position
— find the next smallest value in the list
— switch it with the value in the second position
— repeat until all values are in their proper places

Selection sort example

3 9 6 1 2
Scan right starting with 3.
1 is the smallest. Exchange 1 and 3. * *

1 9 6 3 2
Scan right starting with 9.
2 is the smallest. Exchange 9 and 2. f

1 2 6 3 9
Scan right starting with 6.
3 is the smallest. Exchange 6 and 3. * *

1 2 3 6 9
Scan right starting with 6.
6 is the smallest. Exchange 6 and 6. *

1 2 3 6 9

21

Selection sort example 2

Index

0 1 2 3 4 5 6 7
Value

27 63 1 72 64 58 14 9
1st pass

1 63 | 27 72 64 58 14 o
2"d pass

1 9 27 72 64 58 14 | 63
3rd pass

1 9 14 72 64 58 27 63

Selection sort code

public static voild selectionSort(int[] a) {
for (int 1 = 0; 1 < a.length; 1i++) {
// find index of smallest element

int min = 1i;
for (int 7 = 1 + 1; J < a.length; J++) {
if (alj] < almin]) {
min = j;

// swap smallest element with a[i]
swap (a, 1, min);

Selection sort runtime

* Running time for input size n:
—in practlce a bit faster than bubble sort. Why?

n-1 n-1

> El—z(n—l G+ +1)

=0 j=i+l

Insertion sort

* insertion sort: orders a list of values by repetitively
inserting a particular value into a sorted subset of the
list

* more specifically:
— consider the first item to be a sorted sublist of length 1

— insert the second item into the sorted sublist, shifting the
first item if needed

— insert the third item into the sorted sublist, shifting the
other items as needed

— repeat until all values have been inserted into their proper
positions

Insertion sort

* Simple sorting algorithm.
— n-1 passes over the array

— At the end of pass j, the elements that occupied A
[0]...A[i] originally are still in those spots and in
sorted order.

after
pass 2

after
pass 3

2 15 I 3 1 17 | 10 | 12 5
0 1 2 3 4 5 6 7
2 3 15 I 1 17 | 10 | 12 5
0 1 2 3 4 5 6 7
1 2 3 15 I 17 | 10 | 12 5
0 1 2 3 4 5 6 7

26

Insertion sort example

3 is sorted.
Shift nothing. Insert 9.

3 and 9 are sorted.
Shift 9 to the right. Insert 6.

3, 6, and 9 are sorted.

Shift 9, 6, and 3 to the right. Insert 1.

1, 3, 6, and 9 are sorted.

Shift 9, 6, and 3 to the right. Insert 2.

3 9 6 1 2

3 9 —P» 6 1 2
4 |

3—» 6 —» 9 —» 1 2

4 |

1 3—P» 6 —>» 9 —>» 2
4 |

27

Insertion sort code

public static voild insertionSort (int[]

a) A
i < a.length; i++) {

for (int 1 = 1;

int temp = afli];

// slide elements down to make room for ali]

int j = 1i;

while (3 > 0 && al[j - 1] > temp) {
aljy] = alg - 11;
J—=7

Insertion sort runtime

* worst case: reverse- -ordered elements in array.

1
Ez—1+2+3+...+(n 1) = (n - > n
i=1

= O(n?)
. best case: array is in sorted ascending order.
El —n—1=0(n)

. average case: each element is about halfway
in order.

n-1 .

i_l ~ _(n—l)n
;2—2(l+2+3...+(n h) =~

= 0O(n%)

Comparing sorts

 We've seen "simple" sorting algos. so far, such as:
— selection sort
— insertion sort

comparisons swaps
selection n2/2 n
. . worst: n2/2 worst: n2/2
Insertion

best: n best: n

* They all use nested loops and perform approximately n?
comparisons

* They are relatively inefficient

Average case analysis

Given an array A of elements, an inversion is an
ordered pair (i, j) such that i< j, but
A[i] > A[j]. (out of order elements)

Assume no duplicate elements.

Theorem: The average number of inversions in an
array of n distinct elementsisn(n-1) /4.

Corollary: Any algorithm that sorts by exchanging
adjacent elements requires O(n?) time on
average.

Shell sort description

* shell sort: orders a list of values by comparing
elements that are separated by a gap of >1
indexes

— a generalization of insertion sort
— invented by computer scientist Donald Shell in 1959

e based on some observations about insertion sort:
— insertion sort runs fast if the input is almost sorted

— insertion sort's weakness is that it swaps each
element just one step at a time, taking many swaps to
get the element into its correct position

Shell sort example

* |dea: Sort all elements that are 5 indexes
apart, then sort all elements that are 3 indexes

apart, ...
Original 32 95 16 82 24 66 35 19 75 54 40 43 93 68
After 5-sort | 32 35 16 68 24 40 43 19 75 54 66 95 93 82 | 6 swaps
After3-sort | 32 19 16 43 24 40 54 35 75 68 66 95 93 82 | Sswaps
After 1-sort 16 19 24 32 35 40 43 54 66 68 72 82 93 95 |15 swaps

33

Shell sort code

public static void shellSort(int[] a) {
for (int gap = a.length / 2; gap > 0; gap /= 2) {
for (int 1 = gap; 1 < a.length; i++) {
// slide element i back by gap indexes
// until it's "in order"

int temp = ali];

int jJ = 1i;

while (j >= gap && temp < al[j - gap]) f{
alj] = alj - gapl;
J —= gap;

alj] = temp;

Sorting practice problem

e Consider the following array of int values.
(22, 11, 34, -5, 3, 40, 9, 16, 6]

(a) Write the contents of the array after 3 passes of the outermost loop of bubble
sort.

(b) Write the contents of the array after 5 passes of the outermost loop of
insertion sort.

(c) Write the contents of the array after 4 passes of the outermost loop of
selection sort.

(d) Write the contents of the array after 1 pass of shell sort, using gap = 3.

(e) Write the contents of the array after a pass of bogo sort. (Just kidding.)

