CSE 373: Data Structures and Algorithms

Lecture 5: Math Review/Asymptotic Analysis III

Efficiency examples 6

```
int sum = 0;
for (int i = 1; i <= n; i++) {
    for (int j = 1; j <= i / 2; j += 2) {
        sum++;
    }
}</pre>
```

Math background: Arithmetic series

Series

$$\sum_{i=j}^{k} Expr$$

 for some expression Expr (possibly containing i), means the sum of all values of Expr with each value of i between j and k inclusive

Example:

$$\sum_{i=0}^{4} 2i + 1$$
= $(2(0) + 1) + (2(1) + 1) + (2(2) + 1)$
+ $(2(3) + 1) + (2(4) + 1)$
= $1 + 3 + 5 + 7 + 9$
= 25

Series identities

sum from 1 through N inclusive

$$\sum_{i=1}^{N} i = \frac{N(N+1)}{2}$$

- is there an intuition for this identity?
 - sum of all numbers from 1 to N

$$1 + 2 + 3 + ... + (N-2) + (N-1) + N$$

– how many terms are in this sum? Can we rearrange them?

More series identities

 sum from a through N inclusive (when the series doesn't start at 1)

$$\sum_{i=a}^{N} i = \sum_{i=1}^{N} i - \sum_{i=1}^{a-1} i$$

is there an intuition for this identity?

Series of constants

sum of constants
 (when the body of the series doesn't contain the counter variable such as i)

$$\sum_{i=a}^{b} k = k \sum_{i=a}^{b} 1 = k(b - a + 1)$$

example:

$$\sum_{i=4}^{10} 5 = 5 \sum_{i=4}^{10} 1 = 5(10 - 4 + 1) = 35$$

Splitting series

for any constant k,

splitting a sum with addition

$$\sum_{i=a}^{b} (i+k) = \sum_{i=a}^{b} i + \sum_{i=a}^{b} k$$

moving out a constant multiple

$$\sum_{i=a}^{b} ki = k \sum_{i=a}^{b} i$$

Series of powers

sum of powers of 2

$$\sum_{i=0}^{N} 2^{i} = 2^{N+1} - 1$$

- -1+2+4+8+16+32=64-1=63
- think about binary representation of numbers...

when the series doesn't start at 0:

$$\sum_{i=a}^{N} 2^{i} = \sum_{i=0}^{N} 2^{i} - \sum_{i=0}^{a-1} 2^{i}$$

Series practice problems

- Give a closed form expression for the following summation.
 - A closed form expression is one without the Σ or "...".

$$\sum_{i=0}^{N-2} 2i$$

 Give a closed form expression for the following summation.

$$\sum_{i=10}^{N-1} (i-5)$$

Efficiency examples 6 (revisited)

```
int sum = 0;
for (int i = 1; i <= n; i++) {
    for (int j = 1; j <= i / 2; j += 2) {
        sum++;
    }
}</pre>
```

- Compute the value of the variable sum after the following code fragment, as a closed-form expression in terms of input size n.
 - Ignore small errors caused by i not being evenly divisible by 2 and 4.

Efficiency examples 6 (revisited)

```
int sum = 0;
for (int i = 1; i <= n; i++) {
    for (int j = 1; j <= i / 2; j += 2) {
        sum++;
    }
}</pre>
```

Growth rate terminology (recap)

- f(n) = O(g(N))
 - g(n) is an upper bound on f(n)
 - f(n) grows no faster than g(n)

- $f(n) = \Omega(g(N))$
 - g(N) is a lower bound on f(n)
 - f(n) grows at least as fast as g(N)

- $f(n) = \Theta(g(N))$
 - f(n) grows at the same rate as g(N)

Facts about big-Oh

- If $T_1(N) = O(f(N))$ and $T_2(N) = O(g(N))$, then - $T_1(N) + T_2(N) = O(f(N) + g(N))$ - $T_1(N) * T_2(N) = O(f(N) * g(N))$
- If T(N) is a polynomial of degree k, then: $T(N) = \Theta(N^k)$
 - example: $17n^3 + 2n^2 + 4n + 1 = \Theta(n^3)$
- $log^k N = O(N)$, for any constant k

Complexity classes

 complexity class: A category of algorithm efficiency based on the algorithm's relationship to the input size N.

Class	Big-Oh	If you double N,	Example
constant	O(1)	unchanged	10ms
logarithmic	O(log ₂ N)	increases slightly	175ms
linear	O(N)	doubles	3.2 sec
log-linear	O(N log ₂ N)	slightly more than doubles	6 sec
quadratic	O(N ²)	quadruples	1 min 42 sec
cubic	O(N ³)	multiplies by 8	55 min
		•••	
exponential	O(2 ^N)	multiplies drastically	5 * 10 ⁶¹ years

Complexity cases

- Worst-case complexity: "most challenging" input of size n
- Best-case complexity: "easiest" input of size n
- Average-case complexity: random inputs of size n
- Amortized complexity: m "most challenging" consecutive inputs of size n, divided by m

Bounds vs. Cases

Two orthogonal axes:

- Bound
 - Upper bound (O)
 - Lower bound (Ω)
 - Asymptotically tight (Θ)
- Analysis Case
 - Worst Case (Adversary), T_{worst}(n)
 - Average Case, T_{avg}(n)
 - Best Case, T_{best}(n)
 - Amortized, T_{amort}(n)

One can estimate the bounds for any given case.

Example

List.contains(Object o)

- returns true if the list contains o; false otherwise
- Input size: n (the length of the List)
- f(n) = "running time for size n"
- But f(n) needs clarification:
 - Worst case f(n): it runs in at most f(n) time
 - Best case f(n): it takes at least f(n) time
 - Average case f(n): average time

Recursive programming

- A method in Java can call itself; if written that way, it is called a recursive method
- The code of a recursive method should be written to handle the problem in one of two ways:
 - base case: a simple case of the problem that can be answered directly; does not use recursion.
 - recursive case: a more complicated case of the problem, that isn't easy to answer directly, but can be expressed elegantly with recursion; makes a recursive call to help compute the overall answer

Recursive power function

Defining powers recursively:

```
pow(x, 0) = 1

pow(x, y) = x * pow(x, y-1), y > 0
```

```
// recursive implementation
public static int pow(int x, int y) {
    if (y == 0) {
        return 1;
    } else {
        return x * pow(x, y - 1);
    }
}
```