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CSE 373, Spring 2011 
Homework #6: Hashing It Out (40 points) 

Due Friday, May 20, 2011, Beginning of Class 
 

In this assignment you practice different hashing concepts including different collision resolution techniques, 
implementing hashCode for different classes, and implementing the Map abstract data type backed by a hash 
table that uses separate chaining as its collision resolution strategy.  

This assignment should be worked on individually.  Part A should be turned in on paper in class.  Part B should 
be submitted electronically by submitting a file named HashMap.java.  For Part B you will also need the addi-
tional supporting files: Map.java (interface to implement), HashMap.java (a partially implemented class to 
which you should add the get and remove methods), HashMapEntry.java (a class that models a key  value 
pair that can be inserted into the HashMap), and HashMapClient.java (a client program containing a couple of 
testing methods). 

This is considered to be a written homework assignment therefore late submissions can be turned in up to the 
beginning of lecture on Friday, May 20 for a deduction of 20%.  Submitting any portion of this assignment late 
will incur a deduction of 20% on the entire assignment. 

Part A: Hashing Concepts 
 

1. Given input {66, 33, 287, 96, 81, 941, 146}, a hash table of size 10, no rehashing, and a hash function 
h(x) = x (mod 10), show the resulting: 

a) Separate chaining hash table 
b) Hash table using linear probing 
c) Hash table using quadratic probing 
d) Hash table with second hash function h2(x) = 7 – (x mod 7) 

 
 

2. What are the advantages and disadvantages of the various collision resolution techniques (i.e. separate 
chaining, linear probing, quadratic probing, and double hashing)? 
 
 

3. Override the hashCode method for the following two classes.  Your hashCode methods should use the 
principles discussed in class and found in the Bloch reading which can be found off of the homework 
page of our course website.  For both classes, if two objects are equal their hashCodes must be equal.  
Hint: For fields that have a Java object type, take advantage of the hashCode methods implemented for 
those objects by Java when you are constructing your own hashCode method.  Read the API to discover 
how hashCode is implemented for different Java objects. 
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public public class BigNum { 
    private List<Integer> digits; 
    private boolean isNegated; 
     
    ... 
     
    public boolean equals(Object other) { 
        if (!(other instanceof BigNum)) { 
         return false; 
        } 
         
        BigNum o = (BigNum) other; 
         
        if (digits.isEmpty() && o.digits.isEmpty()) { 
         return true; 
        } 
        else { 
         return digits.equals(o.digits) && isNegated == o.isNegated; 
        } 
    } 
} 
 
 
public class ProjectPartners { 
    private int year; 
    private int quarter; // 0..3 -> AU,WI,SP,SU 
    private int prjNum; 
    private String student1, student2; 
    
    ... 
 
    public boolean equals(Object other) { 
        if (!(other instanceof ProjectPartners)) { 
         return false; 
        } 
         
        ProjectPartners o = (ProjectPartners)other; 
         
        boolean sameStudents =  
            (student1.equals(o.student1) && student2.equals(o.student2))  
         || (student1.equals(o.student2) && student2.equals(o.student1)); 
         
        return sameStudents && prjNum == o.prjNum  
            && quarter == o.quarter && year == o.year; 
    } 
} 
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Part B: Hash Map Implementation 
For this portion of the assignment you will finish implementing the map data structure that we began in lecture. 
 
The goal is to complete the implementation of the instructor-provided Map interface, which represents a map of 
keys into values.  
 
Here are its methods: 

public interface Map<K, V> { 
    public boolean containsKey(K key);   
    public V get(K key);    
    public void print(); 
    public void put(K key, V value); 
    public V remove(K key); 
    public int size(); 
} 

 

In lecture we implemented containsKey and put and the print and size methods were already provided.   
 
Methods to Implement: 
Your job is to implement the get and the remove methods.  These methods are specified below.  Both of these 
methods should have constant (O(1)) expected runtime assuming rehashing were properly implemented to keep 
the load factor at an acceptable ratio; you do not need to implement rehashing to ensure this is the case.  

public V get(K key) 

Returns the value mapped to by the given key, if any.  If the given key is not contained in this map, re-
turns null.  Your implementation should correctly fetch the value mapped to a null key. 
 
public V remove(K key) 

Removes the mapping for the given key from this map.  If key is found in your HashMap, you should re-
move the mapping and return the value that was associated with the key.  If the key is not found in your 
HashMap, your HashMap should not be altered and null should be returned.  null is a valid key value so 
your method should behave the same way with a null key as it would with any other value.  In other 
words, if null is passed as the key and it is in the HashMap you should remove the mapping with the null 
key and return the value that was mapped to null; otherwise, your HashMap should not be altered and 
null should be returned. 

 
 

 


