
1 of 4

CSE 373, Spring 2011
Homework #3: Fun A-SORT-ment (40 points)

Due Friday, April 22, 2011, Beginning of Class
This assignment explores several of the different sorting algorithms we have learned. In Part A of the assign-
ment you explore the performance of different sorting algorithms by using a program called the Sort Detective.
The Sort Detective allows you to specify an unnamed sort, an input size, and the ordering of the input and re-
turns to you the running time of the sort. By altering your input to the Sort Detective, you can make an in-
formed guess which sort is being used. In Part B of this assignment you will gain experience with implement-
ing a variation of a sorting algorithm we learned about in lecture.

This assignment should be worked on individually. Part A should be turned in on paper in class. Part B should
be submitted electronically.

Part A: Sort Detective (25 points)

Background Information

This part of the assignment asks you to evaluate anonymous sorting algorithms, based only on their external be-
havior, to figure out which is which. The algorithms are the following (their implementation details can be
found in the lecture slides):

• Bogo sort
• Bubble sort (as implemented in the lecture slides; no optimizations)
• Selection sort
• Insertion sort
• Shell sort (using Shell's increments as in the lecture slides; see Figure 7.4 on pg. 251 in the textbook)
• Merge sort
• Quick sort (using the first element in the range as the pivot for partitioning as in the lecture slides)

You will be provided with a testing program called the Sort Detective. The Sort Detective allows you to run
run any of the algorithms, but it doesn't tell you which algorithm is which; it only refers to them by a number.
Your goal is to run the program several times with different parameters, observe the behavior of the sorting al-
gorithms, and discover which is which.

When you run the testing program, you will see a user interface asking for several pieces of information. You
may enter the following information:

• Student ID: You must enter your 7-digit student ID number before
running any of the sorts.

• Algorithm: Chose one of the anonymous sorting algorithms to run.

• # of elements: Type in how many elements should be in the array to
sort. (You must type a non-negative number in this box before run-
ning any of the sorts.)

• Order of elements: Since some sorting algorithms perform differ-
ently when given different input, you can choose to have your input
array in the following orders:

o Random: elements are given initial values randomly.
o Ascending: elements' values go from smallest to largest; so they are already in sorted order.
o Descending: elements' values go from largest to smallest; so they are in backwards order.

2 of 4

What to turn in

Turn in a written report explaining which sort is which, including supporting data to back up your claims. The
following supporting data is required, for every sorting algorithm:

1. A table of the runtime of each algorithm for several (at least four) nontrivial input sizes. A nontrivial
input size means one where the runtime is more than just a few milliseconds. When you can, increase
the input size until the runtime takes at least one second. If input sizes are chosen well, they will allow
you to see enough variation in runtime to give you strong evidence to support your answers to (2) and
(3) below.

To reduce margin of error, run the algorithm a few times on each input size and choose the median of
the three times. You need not use the same input sizes for every algorithm, since this might not produce
the most useful data; but if you intend to compare two algorithms directly by how fast they run, you
should use the same input size for that comparison. In order to get the most accurate runtimes possible,
you may want to close other programs that might be taking a lot of processing power and memory and
affecting the Sort Detective runtimes.

Each algorithm should have its own table. Here is an example:

 Average runtime for three runs (ms)
Input Size Random Ascending Descending
10000 79 50 102
20000 219 102 398
30000 681 153 1443
40000 1842 198 5017

2. Your estimation of the Big-Oh for each algorithm, based on the data you gathered. You must gather ap-
propriate data that clearly shows the relevant patterns of the algorithm's runtime. This likely means
measuring different algorithms at different input sizes, since some algorithms are much faster than oth-
ers.

3. Your statement of which sorting algorithm it is, along with your reasoning. You should base your rea-
soning on the following:

o growth rate (Big-Oh) of the algorithm's runtime as input size changes
o speed of the algorithm compared to the other algorithms
o changes in behavior of the algorithm, if any, for different input orderings

If errors caused by the algorithm caused you to deduce that algorithm, explain why you suspect that al-
gorithm would cause the error.

If all of your claims are based only on relative speeds of the algorithms ("Algorithm 5 was the fastest, so there-
fore it's X-Sort"), you will not receive full credit. You will also not receive full credit if you use "process of
elimination" to state which algorithm is being used ("I have already figured out the first six algorithms, so the
last algorithm must be X-Sort").

3 of 4

Part B: Selection Sort Variation (15 Points)
There are many different tweaks that can be made to standard sorting algorithms to increase their performance.
In this part of the assignment you will explore one such tweak to the selection sort algorithm that was presented
in lecture.

Write a Java method dualSelectionSort that takes an array of integers and sorts their values by using a
variation of selection sort that takes into account both the smallest and the largest values in the list on each pass.
More specifically, your code should implement the following algorithm:

Find the minimum and the maximum value in the list.

Swap the minimum value with the value in the first position.

Swap the maximum value with the value in the last position.

Repeat the steps above for the remainder of the list (starting at the second position and ending at
the second to last position and narrowing the range of positions examined from both ends of the
array each time).

For example, if arr = {27, 63, 1, 72, 64, 58, 14, 9}, then the call dualSelectionSort(arr)
would make the following passes over arr to sort it:

Index 0 1 2 3 4 5 6 7
Value 27 63 1 72 64 58 14 9
1st Pass 1 63 27 9 64 58 14 72
2nd Pass 1 9 27 63 14 58 64 72
3rd Pass 1 9 14 58 27 63 64 72
4th Pass 1 9 14 27 58 63 64 72

After implementing your method in Java and ensuring that it is correct, compare your dualSelectionSort
method and the selectionSort method presented in lecture by running timing tests with arrays of different
sizes. To help you create random sorted arrays and run your timing tests, use the method createRandomAr-
ray (shown below) and System.nanoTime() (as seen in lecture). Answer the following questions:

• What array sizes did you use to compare the two algorithms and why?

• What were the runtimes of each array size with each sort? It might be useful to organize your data in a
table.

• Does dualSelectionSort provide an improvement to selectionSort? If so, describe the im-
provement that you see.

• Does dualSelectionSort's growth rate (i.e. Big-Oh) appear to be the same as or different than se-
lectionSort's? Explain your answer based on the runtimes you observed.

What to turn in: Your dualSelectionSort should be found in a class named DualSelectionSort and
should be saved in a file named DualSelectionSort.java. Turn in DualSelectionSort.java elec-
tronically by submitting it to the turnin link on the course homework webpage.

For the analysis, you will likely want to save the code/methods you use to do your timing tests in DualSelec-
tionSort.java as well, but we will not grade your timing code/methods. However, we will grade your an-
swers to the questions above. Save your answers in a file named README.txt and also submit that file using
the same turnin link on the course homework webpage.

4 of 4

import java.util.Random;
...
public static int[] createRandomArray(int size) {
 int[] array = new int[size];
 Random rand = new Random();

 // fill it with random data in [0, size]
 for (int i = 0; i < size; i++) {
 // pick random numbers (subtract a bit so that some
 // are negative)
 array[i] = rand.nextInt(size * 3) - size / 4;
 }

 return array;
}

