
CSE 373, Spring 2011
Homework #2: Algorithm Analysis (40 points)

Due Friday, April 15, 2011, Beginning of Class

Turn in your answers for #1 - #4 on your own paper at the beginning of class. Please
write neatly and clearly to help the TAs. Staple multiple pages together and write your
name on the top of every page.

Turn in your answer for #5 electronically using the link off of the homework page of the
course website.

1. (4 points) Show that the function log2(5n) is O(log2n). You will need to use the
definition of O(f(n)) to do this. In other words, find values for c and n0 such that
the definition of big-O holds true as we did with the examples in lecture. For full
credit, please show the steps you took to arrive at your c and n0.

2. (6 points) (adapted from Weiss 2.1) Order the following functions by growth rate:

N2, N logN, 2/N, 2N, 83, N2 log N, N!, N1.5, N3, log N, N log (N2), 4logN, N

Indicate which functions grow at the same rate. Recall that a function f(N) grows
at the same rate as function g(N) if f(N) = 	 Θ(g(N)).

3. (8 points) Weiss question 2.2 on p.50. You do not need to prove an item is true
(just saying true is enough for full credit), but you must give a counter example in
order to demonstrate an item is false if you want full credit. To give a counter
example, give values for T1(N), T2(N), and f(N) for which the statement is false.

4. (10 points) (adapted from Weiss 2.7) Give the Big-Oh for each of the following
code excerpts. For parts (a) – (c), verify your Big-Oh doing an precise algorithm
analysis, using summations and reducing to closed forms as demonstrated in
class. You may want to refer to section 1.2.3 in the book for series formulas. For
full credit, show your work of how you used summations to reduced to closed
form. For part (d), give a brief explanation as to how you came up with your Big-
Oh.
a) sum = 0;
 for (i = 1; i <= n; i++) {
 for (j = 1; j <= n; j++) {

 sum++;
 sum++;
 }

 }

b) sum = 0;
 for (i = 1; i <= n; i++) {
 for (j = 1; j <= 3 * i; j++) {
 sum++;
 }
 for (k = 1; k <= 100000; k++) {
 sum++;
 }
 }

c) sum = 0;
 for (i = 1; i <= n; i++) {
 for (j = 1; j <= i * i; j++) {
 sum++;
 }
 }

d) sum = 0;
 for (i = 1; i <= n; i++) {
 for (j = 1; j <= i * i; j++) {
 if (j % i == 0) {
 for (k = 1; k <= j; k++) {

 sum++;
 }
}

 }
 }

5. (12 points)
(a) Write a Java method (your code should probably be under twenty lines)
public static int firstNonsmallerIndex(int[] arr, int val)
that takes in an array in sorted order and a value, and returns the first index of a
value equal or larger, or -1 if value is larger than the max.

Your method must run in O(log N) time provided the list has few duplicates.
For example, if arr = {1,2,3,3,3,4,5,5,14,17}, then
firstNonsmallerIndex(arr, 3) returns 2,
firstNonsmallerIndex(arr, 4) returns 5,
firstNonsmallerIndex(arr, -1) returns 0,
firstNonsmallerIndex(arr, 23) returns -1, and
firstNonsmallerIndex(arr, 15) returns 9.

Hints: Your code will look similar to binary search. Once you have found one
non-smaller index, it doesn't mean that it is the first non-smaller index. In other
words, you should keep on searching until you are sure you have found the first
non-smaller index.

(b) After implementing your method in Java and ensuring that it is correct, run
timing tests on your method with arrays of different sizes. Use the method
createRandomSortedArray (found on the next page) and

System.nanoTime() (as seen in lecture) to help you create random sorted
arrays and run your timing tests. Answer the following questions:

• What array sizes did you choose and why?
• What were the runtimes of each array size?
• Did your runtimes increase as you expected according to the Big-Oh of

your algorithm? Why or why not?

For part (a), your firstNonsmallerIndex method should be found in a class
named FirstNonSmaller and should be saved in a file named
FirstNonSmaller.java. Turn in FirstNonSmaller.java electronically
by submitting it to the turnin link on the course homework webpage.

For part (b), you will likely want to save the code/methods you use to do your
timing tests in FirstNonSmaller.java as well, but we will not grade your
timing code/methods. However, we will grade your answers to the questions
above. Save your answers in a file named README.txt and also submit that file
using the same turnin link on the course homework webpage.

import java.util.*;

....

public static int[] createRandomSortedArray(int size) {
 Random rand = new Random();
 int[] array = new int[size];

 for (int i = 0; i < size; i++) {
 // pick random numbers (subtract a bit so that some
 // are negative)
 array[i] = rand.nextInt(size * 3) - size / 4;
 }

 Arrays.sort(array);

 return array;
}

