Today’s Outline

- Announcements
 - No class on Monday 5/31
 - Homework #6/7 due Thurs 6/3 at 11:45pm.

- Graphs
 - Minimum Spanning Trees
 - Sorting

Why Sort?

Sorting: The Big Picture

Given \(n \) comparable elements in an array, sort them in an increasing (or decreasing) order.

<table>
<thead>
<tr>
<th>Simple algorithms: (O(n^2))</th>
<th>Fancier algorithms: (O(n \log n))</th>
<th>Comparison lower bound: (\Omega(n \log n))</th>
<th>Specialized algorithms: (O(n))</th>
<th>Handling huge data sets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion sort</td>
<td>Selection sort</td>
<td>Heap sort</td>
<td>Merge sort</td>
<td>Quick sort</td>
</tr>
</tbody>
</table>

Insertion Sort: Idea

- At the \(k \)th step, put the \(k \)th input element in the correct place among the first \(k \) elements
- **Result:** After the \(k \)th step, the first \(k \) elements are sorted.

Runtime:

- worst case :
- best case :
- average case :

Selection Sort: Idea

- Find the smallest element, put it 1st
- Find the next smallest element, put it 2nd
- Find the next smallest, put it 3rd
- And so on …
Mystery(int array a[]) {
 for (int p = 1; p < length; p++) {
 int tmp = a[p];
 for (int j = p; j > 0 && tmp < a[j-1]; j--)
 a[j] = a[j-1];
 a[j] = tmp;
 }
}

Student Activity:

What sort is this?

Selection Sort: Code

void SelectionSort [Array a[0..n-1]) {
 for (i=0, i<n; ++i) {
 j = Find index of smallest entry in a[i..n-1]
 Swap(a[i],a[j])
 }
}

Runtime:

<table>
<thead>
<tr>
<th></th>
<th>worst case</th>
<th>best case</th>
<th>average case</th>
</tr>
</thead>
</table>

HeapSort:
Using Priority Queue ADT (heap)

Shove all elements into a priority queue, take them out smallest to largest.

Runtime:

AVL Sort

Divide and conquer

- A common and important technique in algorithms
 - Divide problem into parts
 - Solve parts
 - Merge solutions
Divide and Conquer Sorting

- MergeSort:
 - Divide array into two halves
 - Recursively sort left and right halves
 - Merge halves
- QuickSort:
 - Partition array into small items and large items
 - Recursively sort the two smaller portions

Merge Sort

MergeSort (Array [1..n])
1. Split Array in half
2. Recursively sort each half
3. Merge two halves together

Merge (a1[1..n], a2[1..n])

i1 = 1, i2 = 1
While (i1 < n, i2 < n) {
 if (a1[i1] < a2[i2]) {
 Next is a1[i1]
 i1++
 } else {
 Next is a2[i2]
 i2++
 }
}

Now throw in the dregs...

Merge Sort: Complexity

- The merging requires an auxiliary array

Auxiliary array

2 4 8 9 1 3 5 6
Properties of MergeSort

- **Definition:** In-place
 - Can be done without extra memory

- **MergeSort:** Not in-place
 - Requires Auxiliary array

Quicksort

- Uses divide and conquer
- Doesn’t require \(O(N) \) extra space like MergeSort

- Partition into left and right
 - Left less than pivot
 - Right greater than pivot
- Recursively sort left and right
- Concatenate left and right

Quick Sort

1. Pick a “pivot”
2. Divide into less-than & greater-than pivot
3. Sort each side recursively

Selecting the pivot

- Ideas?
QuickSort Example

- Choose the pivot as the median of three.
- Place the pivot and the largest at the right and the smallest at the left.

Recursive Quicksort

```c
QuickSort(A[]): integer array, left, right : integer) {
  pivotindex : integer;
  if left + CUTOFF <= right then
    pivot := median3(A, left, right);
    pivotindex := Partition(A, left, right-1, pivot);
    QuickSort(A, left, pivotindex - 1);
    QuickSort(A, pivotindex + 1, right);
  else
    Insertionsort(A, left, right);
}
```

Don’t use quicksort for small arrays. CUTOFF = 10 is reasonable.

Cutoff for quicksort

- Quicksort performs poorly on small sets
 - In fact insertion sort does better
- Small sets occur often due to the recursion
- So below a certain set size, or cutoff, switch to insertion sort

Recurrence Relations

Write the recurrence relation for QuickSort:

- Best Case:
- Worst Case:
QuickSort:
Best case complexity

QuickSort:
Worst case complexity

QuickSort:
Average case complexity

Turns out to be $O(n \log n)$

See Section 7.7.5 for an idea of the proof.
Don’t need to know proof details for this course.

QuickSort Complexity

• Worst case: $O(n^2)$
• Best case: $O(n \log n)$
• Average Case: $O(n \log n)$

Mergesort and massive data

• MergeSort is the basis of massive sorting
• Quicksort and Heapsort both jump all over the array, leading to expensive random disk accesses
• Mergesort scans linearly through arrays, leading to (relatively) efficient sequential disk access
• In-memory sorting of reasonable blocks can be combined with larger mergesorts
• Mergesort can leverage multiple disks

Features of Sorting Algorithms

• In-place
 – Sorted items occupy the same space as the original items. (No copying required, only $O(1)$ extra space if any.)
• Stable
 – Items in input with the same value end up in the same order as when they began.
How fast can we sort?

- Heapsort, Mergesort, and Quicksort all run in \(O(N \log N) \) best case running time
- Can we do any better?
- No, if the basic action is a comparison.

Sorting Model

- Recall our basic assumption: we can only compare two elements at a time
 - we can only reduce the possible solution space by half each time we make a comparison
- Suppose you are given \(N \) elements
 - Assume no duplicates
- How many possible orderings can you get?
 - Example: \(a, b, c \) \((N = 3) \)

Permutations

- How many possible orderings can you get?
 - Example: \(a, b, c \) \((N = 3) \)
 - \((a \ b \ c), (a \ c \ b), (b \ a \ c), (c \ a \ b), (c \ b \ a) \)
 - 6 orderings = \(3! \) \(\text{(ie, "3 factorial") } \)
 - All the possible permutations of a set of 3 elements
- For \(N \) elements
 - \(N \) choices for the first position, \((N-1) \) choices for the second position, …, \(2 \) choices, \(1 \) choice
 - \(N(N-1)(N-2) \cdots (2)(1) = N! \) possible orderings

Decision Tree

- The leaves contain all the possible orderings of \(a, b, c \)

Lower bound on Height

- A binary tree of height \(h \) has at most how many leaves?
 - \(L \)
- A binary tree with \(L \) leaves has height at least:
 - \(h \)
- The decision tree has how many leaves:
 - \(\log N/2 \)
- So the decision tree has height:
 - \(h \)

\[\log(N!) \text{ is } \Omega(N \log N) \]

\[\log(N!) = \log(N \cdot (N-1) \cdot (N-2) \cdots (2) \cdot (1)) = \log N + \log(N-1) + \log(N-2) + \cdots + \log 2 + \log 1 \geq \log N + \log(N-1) + \log(N-2) + \cdots + \log \frac{N}{2} \geq \frac{N}{2} \log \frac{N}{2} \geq \frac{N}{2} \log N - \frac{N}{2} \log 2 \geq \frac{N}{2} (\log N - \log 2) \geq \frac{N}{2} \log N \geq \Omega(N \log N) \]
\(\Omega(N \log N) \)

- Run time of any comparison-based sorting algorithm is \(\Omega(N \log N) \)
- Can we do better if we don’t use comparisons?

BucketSort (aka BinSort)

If all values to be sorted are known to be between 1 and \(K \), create an array \(\text{count} \) of size \(K \), increment counts while traversing the input, and finally output the result.

Example
\(K=5 \), Input = \((5,1,3,4,3,2,1,1,5,4,5) \)

<table>
<thead>
<tr>
<th>count</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Bucket Sort Complexity: O(n+K)

- Case 1: \(K \) is a constant
 - BinSort is linear time
- Case 2: \(K \) is variable
 - Not simply linear time
- Case 3: \(K \) is constant but large (e.g. 2\(^{32}\))
 - ???

Fixing impracticality: RadixSort

- Radix = “The base of a number system”
 - We’ll use 10 for convenience, but could be anything

- Idea: BucketSort on each digit, least significant to most significant (lsd to msd)

Radix Sort Example (1st pass)

<table>
<thead>
<tr>
<th>Input data</th>
<th>Bucket sort by 1’s digit</th>
<th>After 1st pass</th>
</tr>
</thead>
<tbody>
<tr>
<td>478</td>
<td></td>
<td>721</td>
</tr>
<tr>
<td>537</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>123</td>
</tr>
<tr>
<td>721</td>
<td></td>
<td>537</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>67</td>
</tr>
<tr>
<td>58</td>
<td></td>
<td>478</td>
</tr>
<tr>
<td>123</td>
<td></td>
<td>38</td>
</tr>
<tr>
<td>67</td>
<td></td>
<td>9</td>
</tr>
</tbody>
</table>

This example uses B=10 and base 10 digits for simplicity of demonstration. Larger bucket counts should be used in an actual implementation.

Radix Sort Example (2nd pass)

<table>
<thead>
<tr>
<th>After 1st pass</th>
<th>Bucket sort by 10’s digit</th>
<th>After 2nd pass</th>
</tr>
</thead>
<tbody>
<tr>
<td>721</td>
<td></td>
<td>721</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>123</td>
<td></td>
<td>123</td>
</tr>
<tr>
<td>537</td>
<td></td>
<td>537</td>
</tr>
<tr>
<td>67</td>
<td></td>
<td>67</td>
</tr>
<tr>
<td>478</td>
<td></td>
<td>478</td>
</tr>
<tr>
<td>38</td>
<td></td>
<td>38</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>9</td>
</tr>
</tbody>
</table>
Radix Sort Example (3rd pass)

<table>
<thead>
<tr>
<th>After 2nd pass</th>
<th>Bucket sort by 100's digit</th>
<th>After 3rd pass</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>9</td>
<td>67</td>
</tr>
<tr>
<td>721</td>
<td>123</td>
<td>123</td>
</tr>
<tr>
<td>123</td>
<td>38</td>
<td>38</td>
</tr>
<tr>
<td>38</td>
<td>67</td>
<td>67</td>
</tr>
<tr>
<td>478</td>
<td>537</td>
<td>537</td>
</tr>
</tbody>
</table>

Invariant: after k passes the low order k digits are sorted.

RadixSort

- Input: 126, 328, 636, 341, 416, 131, 328

BucketSort on lsd:

BucketSort on next-higher digit:

BucketSort on msd:

Radixsort: Complexity

- How many passes?
- How much work per pass?
- Total time?
- Conclusion?

In practice
- RadixSort only good for large number of elements with relatively small values

Internal versus External Sorting

- Need sorting algorithms that minimize disk/tape access time

External sorting – Basic Idea:
- Load chunk of data into RAM, sort, store this “run” on disk/tape
- Use the Merge routine from Mergesort to merge runs
- Repeat until you have only one run (one sorted chunk)
- Text gives some examples

Summary of sorting

- O(n^2) average, worst case:
 - Selection Sort, Bubblesort, Insertion sort
- O(n log n) worst case:
 - Shell sort
- O(n log n) average case:
 - Heapsort: in-place, not stable
 - Mergesort: O(n) extra space, stable, massive data
 - Quicksort: Claimed fastest in practice, but O(n^2) worst case. Recursion/stack requirement. Not stable.
- Ω(n log n) worst and average case:
 - Any comparison-based sorting algorithm
- O(n)