Graphs: Traversals and Shortest Path Algorithms (Chapter 9)

CSE 373
Data Structures and Algorithms

Today’s Outline

• Announcements
 – Homework #6/7 coming soon.

• Graphs
 – Topological Sort
 – Shortest Paths Algorithms

Graph Traversals

• Breadth-first search
 – explore all adjacent nodes, then for each of those nodes explore all adjacent nodes

• Depth-first search
 – explore first child node, then its first child node, etc. until goal node is found or node has no children. Then backtrack, repeat with sibling.

• Both:
 – Work for arbitrary (directed or undirected) graphs
 – Must mark visited vertices so you do not go into an infinite loop!

• Either can be used to determine connectivity:
 – Is there a path between two given vertices?
 – Is the graph (weakly) connected?

• Which one:
 – Uses a queue?
 – Uses a stack?
 – Always finds the shortest path (for unweighted graphs)?

The Shortest Path Problem

Given a graph G, edge costs $c_{i,j}$, and vertices s and t in G, find the shortest path from s to t.

For a path $p = v_0, v_1, v_2, \ldots, v_k$
 – unweighted length of path $p = k$ (a.k.a. length)
 – weighted length of path $p = \sum_{i=0}^{k-1} c_{i,i+1}$ (a.k.a cost)

Path length equals path cost when ?

Single Source Shortest Paths (SSSP)

Given a graph G, edge costs $c_{i,j}$, and vertex s, find the shortest paths from s to all vertices in G.

– Is this harder or easier than finding the shortest path from s to t?

All Pairs Shortest Paths (APSP)

Given a graph G and edge costs $c_{i,j}$, find the shortest paths between all pairs of vertices in G.

– Is this harder or easier than SSSP?

– Could we use SSSP as a subroutine to solve this?
Variations of SSSP

- Weighted vs. unweighted
- Directed vs undirected
- Cyclic vs. acyclic
- Positive weights only vs. negative weights allowed
- Shortest path vs. longest path
- …

Applications

- Network routing
- Driving directions
- Cheap flight tickets
- Critical paths in project management (see textbook)
- …

SSSP: Unweighted Version

Ideas?

```c++
void Graph::unweighted (Vertex s){
    Queue q(NUM_VERTICES);
    Vertex v, w;
    for all vertices v do {v.dist = INFINITY;
    s.dist = 0;
    q.enqueue(s);
    while (!q.isEmpty()){
        v = q.dequeue();
        for each w adjacent to v
            if (w.dist == INFINITY){
                w.dist = v.dist + 1;
                w.path = v;
                q.enqueue(w);
            }
    }
}
```

- each edge examined at most once – if adjacency lists are used
- each vertex enqueued at most once

Weighted SSSP:

The Quest For Food

Can we calculate shortest distance to all nodes from MGH 241?

Edsger Wybe Dijkstra

(1930-2002)

- Legendary figure in computer science; was a professor at University of Texas.
- Invented concepts of structured programming, synchronization, and “semaphores” for controlling computer processes.
- Supported teaching programming without computers (pencil and paper)
- 1972 Turing Award
- “In their capacity as a tool, computers will be but a ripple on the surface of our culture. In their capacity as intellectual challenge, they are without precedent in the cultural history of mankind.”
Dijkstra’s Algorithm for Single Source Shortest Path

• Similar to breadth-first search, but uses a heap instead of a queue:
 – Always select (expand) the vertex that has a lowest-cost path to the start vertex
• Correctly handles the case where the lowest-cost (shortest) path to a vertex is not the one with fewest edges

Dijkstra’s Algorithm: Idea

Adapt BFS to handle weighted graphs

Two kinds of vertices:
 – Finished or known vertices
 • Shortest distance has been computed
 – Unknown vertices
 • Have tentative distance

Dijkstra’s Algorithm: Idea

At each step:
1) Pick closest unknown vertex
2) Add it to known vertices
3) Update distances

Dijkstra’s Algorithm: Pseudocode

Initialize the cost of each node to ∞
Initialize the cost of the source to 0

While there are unknown nodes left in the graph
 Select an unknown node b with the lowest cost
 Mark b as known
 For each node a adjacent to b
 if (!a.known)
 if (b.dist + Cost_ba < a.dist){
 decrease(a.dist to= b.dist + Cost_ba);
 a.path = b;
 }

void Graph::dijkstra(Vertex s){
 Vertex v,w;
 Initialize s.dist = 0 and set dist of all other vertices to infinity
 while (there exist unknown vertices, find the one b with the smallest distance)
 b.known = true;
 for each a adjacent to b
 if (!a.known)
 if (b.dist + Cost_ba < a.dist){
 decrease(a.dist to= b.dist + Cost_ba);
 a.path = b;
 }

Important Features

• Once a vertex is made known, the cost of the shortest path to that node is known
• While a vertex is still not known, another shorter path to it might still be found
• The shortest path itself can be found by following the backward pointers stored in node.path
Dijkstra’s Algorithm: Implementation

Initialize the cost of each node to ∞
Initialize the cost of the source to 0
While there are unknown nodes left in the graph
 Select the unknown node b with the lowest cost
 Mark b as known
 For each node a adjacent to b
 a’s cost = min(a’s old cost, b’s cost + cost of (b, a))
Running time?

Dijkstra’s Algorithm: a Greedy Algorithm

Greedy algorithms always make choices that currently seem the best
- Short-sighted – no consideration of long-term or global issues
- Locally optimal - does not always mean globally optimal!!

Dijkstra’s Algorithm: Summary

- Classic algorithm for solving SSSP in weighted graphs without negative weights
- A greedy algorithm (irrevocably makes decisions without considering future consequences)
- Intuition for correctness:
 - shortest path from source vertex to itself is 0
 - cost of going to adjacent nodes is at most edge weights
 - cheapest of these must be shortest path to that node
 - update paths for new node and continue picking cheapest path

Correctness: The Cloud Proof

How does Dijkstra’s decide which vertex to add to the Known set next?
- If path to V is shortest, path to W must be at least as long
 (or else we would have picked W as the next vertex)
- So the path through W to V cannot be any shorter!

Correctness: Inside the Cloud

Prove by induction on # of nodes in the cloud:
Initial cloud is just the source with shortest path 0
Assume: Everything inside the cloud has the correct shortest path
Inductive step: Only when we prove the shortest path to some node v (which is not in the cloud) is correct, we add it to the cloud

When does Dijkstra’s algorithm not work?
Dijkstra’s vs BFS

At each step:
1) Pick closest unknown vertex
2) Add it to finished vertices
3) Update distances

Dijkstra’s Algorithm

At each step:
1) Pick vertex from queue
2) Add it to visited vertices
3) Update queue with neighbors

Breadth-first Search

The Trouble with Negative Weight Cycles

What’s the shortest path from A to E?

Problem?