Graphs: Definitions and Representations
(Chapter 9)
CSE 373
Data Structures and Algorithms

Today’s Outline

- Admin:
 - Midterm #2, Wed May 19th.
 - HW #5 due Thursday, May 20 at 11:45pm

- Graphs
 - Representations
 - Topological Sort

Graph… ADT?

- Not quite an ADT… operations not clear

- A formalism for representing relationships between objects

 Graph $G = (V,E)$
 - Set of vertices: $V = \{v_1, v_2, \ldots, v_n\}$
 - Set of edges: $E = \{e_1, e_2, \ldots, e_m\}$
 where each e_i connects two vertices (v_{i1}, v_{i2})

Graph Definitions

In *directed* graphs, edges have a specific direction:

- v is adjacent to u if $(u, v) \in E$

In *undirected* graphs, they don’t (edges are two-way):

- v is adjacent to u if $(u, v) \in E$

More Definitions: Simple Paths and Cycles

A *simple path* repeats no vertices (except that the first can be the last):

- $p = \{\text{Seattle, Salt Lake City, San Francisco, Dallas}\}$
- $p = \{\text{Seattle, Salt Lake City, Dallas, San Francisco, Seattle}\}$

A *cycle* is a path that starts and ends at the same node:

- $p = \{\text{Seattle, Salt Lake City, Dallas, San Francisco, Seattle}\}$
- $p = \{\text{Seattle, Salt Lake City, Seattle, San Francisco, Seattle}\}$

A *simple cycle* is a cycle that repeats no vertices except that the first vertex is also the last (in undirected graphs, no edge can be repeated)

Trees as Graphs

- Every tree is a graph!
- Not all graphs are trees!

A graph is a tree if

- There are *no cycles* (directed or undirected)
- There is a *path* from the root to every node
Directed Acyclic Graphs (DAGs)

DAGs are directed graphs with no (directed) cycles.

Aside: If program call-graph is a DAG, then all procedure calls can be in-lined

Graph Connectivity

- **Undirected** graphs are connected if there is a path between any two vertices.
- **Directed** graphs are strongly connected if there is a path from any one vertex to any other.
- **Directed** graphs are weakly connected if there is a path between any two vertices, ignoring direction.

A complete graph has an edge between every pair of vertices.

Graph Representations

- 0. List of vertices + list of edges
- 1. 2-D matrix of vertices (marking edges in the cells) = adjacency matrix
- 2. List of vertices each with a list of adjacent vertices = adjacency list

Things we might want to do:
- iterate over vertices
- iterate over edges
- iterate over vertices adj. to a vertex
- check whether an edge exists

Some Applications:
Moving Around Washington

What’s the shortest way to get from Seattle to Pullman?

Edge labels:

Some Applications:
Moving Around Washington

What’s the fastest way to get from Seattle to Pullman?

Edge labels:

Some Applications:
Reliability of Communication

If Wenatchee’s phone exchange goes down, can Seattle still talk to Pullman?
Some Applications: Bus Routes in Downtown Seattle

If we're at 3rd and Pine, how can we get to 1st and University using Metro?

Representation 1: Adjacency Matrix

A $|V| \times |V|$ array in which an element (u, v) is true if and only if there is an edge from u to v.

\[
\begin{array}{c|cccc}
 & 1 & 2 & 3 & 4 \\
\hline
1 & 0 & 1 & 0 & 0 \\
2 & 1 & 0 & 1 & 0 \\
3 & 0 & 1 & 0 & 1 \\
4 & 0 & 0 & 1 & 0 \\
\end{array}
\]

\[
\text{space requirements: runtime:}
\]

Representation 2: Adjacency List

A $|V|$-ary list (array) in which each entry stores a list (linked list) of all adjacent vertices.

Han, Leia, Luke

\[
\text{space requirements: runtime:}
\]

Representation

- adjacency matrix:

\[
A[u][v] = \begin{cases}
\text{weight} & \text{if } (u, v) \in E \\
0 & \text{if } (u, v) \notin E
\end{cases}
\]

Representation

- adjacency list:
Application: Topological Sort

Given a directed graph $G = (V, E)$, output all the vertices in V such that no vertex is output before any other vertex with an edge to it.

Is the output unique?

Valid Topological Sorts:

```c++
void Graph::topsort()
{
    Vertex v, w;
    labelEachVertexWithItsIn-degree();
    for(int count=0; count<NUM_VERTICES; count++)
    {
        v = findNewVertexOfDegreeZero();
        v.topoNum = count;
        for each w adjacent to v
            w.indegree--;
    }
}
```

```c++
void Graph::topsort()
{
    Queue q(NUM_VERTICES);  int counter = 0; Vertex v, w;
    labelEachVertexWithItsIn-degree();
    q.makeEmpty();
    for each vertex v
        if (v.indegree == 0)
            q.enqueue(v);
    while (!q.isEmpty())
    {
        v = q.dequeue();
        v.topologicalNum = ++counter;
        for each w adjacent to v
            if (--w.indegree == 0)
                q.enqueue(w);
    }
}
```

Runtime: