Today’s Outline

- Announcements
 - Midterm #1, Friday April 23rd
 - Homework #3 due Thurs, April 29, 11:45pm.

- Today’s Topics:
 - Priority Queues
 - Binary Min Heap - buildheap
 - D-Heaps
 - Leftist Heaps

Facts about Binary Min Heaps

Observations:
- finding a child/parent index is a multiply/divide by two
- operations jump widely through the heap
- each percolate step looks at only two new nodes
- inserts are at least as common as deleteMins

Realities:
- division/multiplication by powers of two are equally fast
- looking at only two new pieces of data: bad for cache!
- with huge data sets, disk accesses dominate

Representing Complete Binary Trees in an Array

From node i:
- left child: 2i + 1
- right child: 2i + 2
- parent: floor(2i / 2)

implicit (array) implementation:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>

A Solution: d-Heaps

- Each node has d children
- Still representable by array
- Good choices for d:
 - (choose a power of two for efficiency)
 - fit one set of children in a cache line
 - fit one set of children on a memory page/disk block
Operations on d-Heap

- Insert: runtime =
- deleteMin: runtime =

Priority Queues

(Leftist Heaps)

One More Operation

- Merge two heaps. Ideas?

New Operation: Merge

Given two heaps, merge them into one heap
- first attempt: insert each element of the smaller heap into the larger.
 runtime:
- second attempt: concatenate binary heaps’ arrays and run buildHeap.
 runtime:

Leftist Heaps

Idea:
Focus all heap maintenance work in one small part of the heap

Leftist heaps:
1. Most nodes are on the left
2. All the merging work is done on the right

Definition: Null Path Length

null path length (npl) of a node x = the number of nodes between x and a null in its subtree
OR
npl(x) = min distance to a descendant with 0 or 1 children

- npl(null) = -1
- npl(leaf, aka zero children) = 0
- npl(node with one child) = 0

Equivalent definitions:
1. npl(x) is the height of largest perfect subtree rooted at x
2. npl(x) = 1 + min{npl(left(x)), npl(right(x))}
Leftist Heap Properties

- Heap-order property
 - parent’s priority value is ≤ to children's priority values
 - result: minimum element is at the root

- Leftist property
 - For every node x, $\text{npl} (\text{left}(x)) \geq \text{npl} (\text{right}(x))$
 - result: tree is at least as “heavy” on the left as the right

Are leftist trees...
- complete?
- balanced?

Right Path in a Leftist Tree is Short (#1)

Claim: The right path is as short as any in the tree.

Proof: (By contradiction)

Pick a shorter path: $D_1 < D_2$
Say it diverges from right path at x
- $\text{npl}(L) \leq D_1 - 1$ because of the path of length $D_1 - 1$ to null
- $\text{npl}(R) \geq D_2 - 1$ because every node on right path is leftist

Leftist property at x violated!

Why do we have the leftist property?

Because it guarantees that:
- the right path is really short compared to the number of nodes in the tree
- A leftist tree of N nodes, has a right path of at most $\log (N+1)$ nodes

Idea – perform all work on the right path

Right Path in a Leftist Tree is Short (#2)

Claim: If the right path has r nodes, then the tree has at least 2^{r-1} nodes.

Proof: (By induction)

Base case: $r=1$. Tree has at least $2^{1-1} = 1$ node
Inductive step: assume true for $r' < r$. Prove for tree with right path at least r.
1. Right subtree: right path of $r-1$ nodes
 $\Rightarrow 2^{r-1-1}$ right subtree nodes (by induction)
2. Left subtree: also right path of length at least $r-1$ (by previous slide)
 $\Rightarrow 2^{r-1-1}$ left subtree nodes (by induction)
Total tree size: $(2^{r-1-1}) + (2^{r-1-1}) + 1 = 2^{r-1}$

Merge two heaps (basic idea)

- Put the smaller root as the new root,
- Hang its left subtree on the left,
- Recursively merge its right subtree and the other tree.
Merging Two Leftist Heaps

- $\text{merge}(T_1, T_2)$ returns one leftist heap containing all elements of the two (distinct) leftist heaps T_1 and T_2

Merge Example

Merge Continued

Sewing Up the Example

Finally…
Other Heap Operations

- insert?
- deleteMin?

Operations on Leftist Heaps

- merge with two trees of total size n: $O(\log n)$
- insert with heap size n: $O(\log n)$
 - pretend node is a size 1 leftist heap
 - insert by merging original heap with one node heap
- deleteMin with heap size n: $O(\log n)$
 - remove and return root
 - merge left and right subtrees

Leftist Heaps: Summary

<table>
<thead>
<tr>
<th>Good</th>
<th>Bad</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Amortized Time

Amortized time:

Running time limit resulting from “writing off” expensive runs of an algorithm over multiple cheap runs of the algorithm, usually resulting in a lower overall running time than indicated by the worst possible case.

If M operations take total $O(M \log N)$ time, amortized time per operation is $O(\log N)$

Difference from average time:

Skew Heaps

Problems with leftist heaps
- extra storage for npl
- extra complexity/logic to maintain and check npl
- right side is “often” heavy and requires a switch

Solution: skew heaps
- “blindly” adjusting version of leftist heaps
- merge always switches children when fixing right path
- amortized time for: merge, insert, deleteMin = $O(\log n)$
- however, worst case time for all three = $O(n)$

Merging Two Skew Heaps

Only one step per iteration, with children always switched
Skew Heap Code

```c
void merge(heap1, heap2) {
    case {
        heap1 == NULL: return heap2;
        heap2 == NULL: return heap1;
        heap1.findMin() < heap2.findMin():
            temp = heap1.right;
            heap1.right = heap1.left;
            heap1.left = merge(heap2, temp);
            return heap1;
        otherwise:
            return merge(heap2, heap1);
    }
}
```

Runtime Analysis:
Worst-case and Amortized
- No worst case guarantee on right path length!
- All operations rely on merge
 \[\Rightarrow \text{worst case complexity of all ops =} \]
 - Amortized Analysis (Chapter 11)
 - Result: \(M \) merges take time \(M \log n \)
 \[\Rightarrow \text{amortized complexity of all ops =} \]

Comparing Priority Queues
- Binary Heaps
- Leftist Heaps
- d-Heaps
- Skew Heaps